Suppr超能文献

基于潜在调控网络的基因集分析。

Analysis of gene sets based on the underlying regulatory network.

作者信息

Shojaie Ali, Michailidis George

机构信息

Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

J Comput Biol. 2009 Mar;16(3):407-26. doi: 10.1089/cmb.2008.0081.

Abstract

Networks are often used to represent the interactions among genes and proteins. These interactions are known to play an important role in vital cell functions and should be included in the analysis of genes that are differentially expressed. Methods of gene set analysis take advantage of external biological information and analyze a priori defined sets of genes. These methods can potentially preserve the correlation among genes; however, they do not directly incorporate the information about the gene network. In this paper, we propose a latent variable model that directly incorporates the network information. We then use the theory of mixed linear models to present a general inference framework for the problem of testing the significance of subnetworks. Several possible test procedures are introduced and a network based method for testing the changes in expression levels of genes as well as the structure of the network is presented. The performance of the proposed method is compared with methods of gene set analysis using both simulation studies, as well as real data on genes related to the galactose utilization pathway in yeast.

摘要

网络常被用于表示基因与蛋白质之间的相互作用。已知这些相互作用在细胞的重要功能中发挥着重要作用,并且应纳入对差异表达基因的分析中。基因集分析方法利用外部生物学信息并分析预先定义的基因集。这些方法有可能保留基因之间的相关性;然而,它们并未直接纳入有关基因网络的信息。在本文中,我们提出了一种直接纳入网络信息的潜在变量模型。然后,我们使用混合线性模型理论为检验子网显著性的问题提出一个通用的推理框架。介绍了几种可能的检验程序,并提出了一种基于网络的方法来检验基因表达水平的变化以及网络结构。使用模拟研究以及酵母中与半乳糖利用途径相关基因的真实数据,将所提出方法的性能与基因集分析方法进行了比较。

相似文献

1
Analysis of gene sets based on the underlying regulatory network.
J Comput Biol. 2009 Mar;16(3):407-26. doi: 10.1089/cmb.2008.0081.
2
Sample scale-free gene regulatory network using gene ontology.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5523-6. doi: 10.1109/IEMBS.2006.259261.
3
Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana.
Genome Biol. 2004;5(11):R92. doi: 10.1186/gb-2004-5-11-r92. Epub 2004 Oct 25.
4
A copula method for modeling directional dependence of genes.
BMC Bioinformatics. 2008 May 1;9:225. doi: 10.1186/1471-2105-9-225.
5
Quantitative epistasis analysis and pathway inference from genetic interaction data.
PLoS Comput Biol. 2011 May;7(5):e1002048. doi: 10.1371/journal.pcbi.1002048. Epub 2011 May 12.
6
SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
J Bioinform Comput Biol. 2019 Dec;17(6):1950035. doi: 10.1142/S0219720019500355.
7
Growing seed genes from time series data and thresholded Boolean networks with perturbation.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):37-49. doi: 10.1109/TCBB.2012.169.
9
Gene network inference via structural equation modeling in genetical genomics experiments.
Genetics. 2008 Mar;178(3):1763-76. doi: 10.1534/genetics.107.080069. Epub 2008 Feb 3.
10
Identification of genetic network dynamics with unate structure.
Bioinformatics. 2010 May 1;26(9):1239-45. doi: 10.1093/bioinformatics/btq120. Epub 2010 Mar 19.

引用本文的文献

1
Simulated metabolic profiles reveal biases in pathway analysis methods.
Metabolomics. 2025 Sep 9;21(5):136. doi: 10.1007/s11306-025-02335-y.
2
NetREm: Network Regression Embeddings reveal cell-type transcription factor coordination for gene regulation.
Bioinform Adv. 2024 Dec 20;5(1):vbae206. doi: 10.1093/bioadv/vbae206. eCollection 2025.
4
Dissecting Pathway Disturbances Using Network Topology and Multi-platform Genomics Data.
Stat Biosci. 2018 Apr;10(1):86-106. doi: 10.1007/s12561-017-9193-0. Epub 2017 May 4.
5
Differential Network Analysis: A Statistical Perspective.
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1508. Epub 2020 Apr 6.
8
SEMgsa: topology-based pathway enrichment analysis with structural equation models.
BMC Bioinformatics. 2022 Aug 17;23(1):344. doi: 10.1186/s12859-022-04884-8.
10
Do-calculus enables estimation of causal effects in partially observed biomolecular pathways.
Bioinformatics. 2022 Jun 24;38(Suppl 1):i350-i358. doi: 10.1093/bioinformatics/btac251.

本文引用的文献

1
Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model.
Bioinformatics. 2008 Feb 1;24(3):404-11. doi: 10.1093/bioinformatics/btm612. Epub 2007 Dec 14.
2
A Markov random field model for network-based analysis of genomic data.
Bioinformatics. 2007 Jun 15;23(12):1537-44. doi: 10.1093/bioinformatics/btm129. Epub 2007 May 5.
3
Analyzing gene expression data in terms of gene sets: methodological issues.
Bioinformatics. 2007 Apr 15;23(8):980-7. doi: 10.1093/bioinformatics/btm051. Epub 2007 Feb 15.
4
Extensions to gene set enrichment.
Bioinformatics. 2007 Feb 1;23(3):306-13. doi: 10.1093/bioinformatics/btl599. Epub 2006 Nov 24.
5
Calculating the statistical significance of changes in pathway activity from gene expression data.
Stat Appl Genet Mol Biol. 2004;3:Article16. doi: 10.2202/1544-6115.1055. Epub 2004 Jun 22.
6
Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.
Bioinformatics. 2006 Jul 1;22(13):1600-7. doi: 10.1093/bioinformatics/btl140. Epub 2006 Apr 10.
7
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. doi: 10.1073/pnas.0506580102. Epub 2005 Sep 30.
8
Discovering statistically significant pathways in expression profiling studies.
Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13544-9. doi: 10.1073/pnas.0506577102. Epub 2005 Sep 8.
9
Significance analysis of functional categories in gene expression studies: a structured permutation approach.
Bioinformatics. 2005 May 1;21(9):1943-9. doi: 10.1093/bioinformatics/bti260. Epub 2005 Jan 12.
10
Gaining confidence in high-throughput protein interaction networks.
Nat Biotechnol. 2004 Jan;22(1):78-85. doi: 10.1038/nbt924. Epub 2003 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验