Suppr超能文献

杏仁中依赖黄素腺嘌呤二核苷酸的醇腈酶的底物结合为氰醇形成机制提供了见解,并解释了脱氢活性的缺失。

Substrate binding in the FAD-dependent hydroxynitrile lyase from almond provides insight into the mechanism of cyanohydrin formation and explains the absence of dehydrogenation activity.

作者信息

Dreveny Ingrid, Andryushkova Aleksandra S, Glieder Anton, Gruber Karl, Kratky Christoph

机构信息

Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität, Humboldtstrasse 50/III, A-8010 Graz, Austria.

出版信息

Biochemistry. 2009 Apr 21;48(15):3370-7. doi: 10.1021/bi802162s.

Abstract

In a large number of plant species hydroxynitrile lyases catalyze the decomposition of cyanohydrins in order to generate hydrogen cyanide upon tissue damage. Hydrogen cyanide serves as a deterrent against herbivores and fungi. In vitro hydroxynitrile lyases are proficient biocatalysts for the stereospecific synthesis of cyanohydrins. Curiously, hydroxynitrile lyases from different species are completely unrelated in structure and substrate specificity despite catalyzing the same reaction. The hydroxynitrile lyase from almond shows close resemblance to flavoproteins of the glucose-methanol-choline oxidoreductase family. We report here 3D structural data of this lyase with the reaction product benzaldehyde bound within the active site, which allow unambiguous assignment of the location of substrate binding. Based on the binding geometry, a reaction mechanism is proposed that involves one of the two conserved active site histidine residues acting as a general base abstracting the proton from the cyanohydrin hydroxyl group. Site-directed mutagenesis shows that both active site histidines are required for the reaction to occur. There is no evidence that the flavin cofactor directly participates in the reaction. Comparison with other hydroxynitrile lyases reveals a large diversity of active site architectures, which, however, share the common features of a general active site base and a nearby patch with positive electrostatic potential. On the basis of the difference in substrate binding geometry between the FAD-dependent HNL from almond and the related oxidases, we can rationalize why the HNL does not act as an oxidase.

摘要

在大量植物物种中,羟基腈裂解酶催化氰醇的分解,以便在组织受损时生成氰化氢。氰化氢可作为抵御食草动物和真菌的威慑物。体外羟基腈裂解酶是用于立体特异性合成氰醇的高效生物催化剂。奇怪的是,尽管催化相同的反应,但来自不同物种的羟基腈裂解酶在结构和底物特异性上完全无关。杏仁中的羟基腈裂解酶与葡萄糖 - 甲醇 - 胆碱氧化还原酶家族的黄素蛋白有密切相似性。我们在此报告该裂解酶的三维结构数据,其活性位点内结合有反应产物苯甲醛,这使得能够明确确定底物结合的位置。基于结合几何结构,提出了一种反应机制,其中两个保守的活性位点组氨酸残基之一作为通用碱从氰醇羟基中提取质子。定点诱变表明,两个活性位点组氨酸都是反应发生所必需的。没有证据表明黄素辅因子直接参与反应。与其他羟基腈裂解酶的比较揭示了活性位点结构的巨大多样性,然而,它们具有通用活性位点碱和附近带正静电势区域的共同特征。基于杏仁中依赖黄素腺嘌呤二核苷酸的羟基腈裂解酶与相关氧化酶之间底物结合几何结构的差异,我们可以解释为什么该羟基腈裂解酶不充当氧化酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ad5/2669238/9baad0716e0c/bi-2008-02162s_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验