Small David W, Head-Gordon Martin
Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Chem Phys. 2009 Feb 28;130(8):084103. doi: 10.1063/1.3069296.
For a given number of electrons, total spin, and matching spin z-component, we construct a set that spans the many-electron spin subspace associated with these spin values. Each vector in the set is tensorially related to spin-pure vectors of six electrons or less. We show that in the limit of separated atoms coupled to any allowed overall spin, the corresponding spin vector has a simple form relative to the introduced sets. From this, we set up a model that is computationally simple, spin pure, size consistent, and able to properly treat molecules as they dissociate into atoms or fragments.
对于给定数量的电子、总自旋以及匹配的自旋z分量,我们构建了一个集合,该集合跨越与这些自旋值相关的多电子自旋子空间。集合中的每个向量都与六个或更少电子的自旋纯向量张量相关。我们表明,在与任何允许的总自旋耦合的分离原子的极限情况下,相应的自旋向量相对于引入的集合具有简单的形式。据此,我们建立了一个计算简单、自旋纯、尺寸一致且能够在分子解离为原子或碎片时正确处理分子的模型。