Suppr超能文献

Do independent-particle-model broken-symmetry solutions contain more physics than the symmetry-adapted ones? The case of homonuclear diatomics.

作者信息

Li Xiangzhu, Paldus Josef

机构信息

Department of Applied Mathematics, Quantum Theory Group, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

出版信息

J Chem Phys. 2009 Feb 28;130(8):084110. doi: 10.1063/1.3078417.

Abstract

We explore spin-preserving, singlet stability of restricted Hartree-Fock (RHF) solutions for a number of closed-shell, homonuclear diatomics in the entire relevant range of internuclear separations. In the presence of such instabilities we explore the implied broken-symmetry (bs) solutions and check their stability. We also address the occurrence of vanishing roots rendered by the stability problem in the case of bs solutions. The RHF bs solutions arise primarily due to the symmetry breaking of the relevant, mostly frontier, molecular orbitals, which approach atomic-type orbitals in the dissociation limit. The resulting bs RHF solutions yield more realistic potential energy curves (PECs) than do the symmetry adapted (sa) solutions. These PECs are shown to be very similar to those rendered by the density functional theory (DFT). Moreover, the sa DFT solutions are found to be stable in a much wider range of internuclear separations than are the RHF solutions, and their bs analogs differ very little from the sa ones. Finally, we examine a possible usefulness of bs RHF solutions in post-HF correlated approaches to the many-electron problem, specifically in the limited configuration interaction and coupled-cluster methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验