Srinivasan Manoj, Ruina Andy
Mechanical and Aerospace Engineering, Princeton University, New Jersey 08544, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):066609. doi: 10.1103/PhysRevE.78.066609. Epub 2008 Dec 24.
A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container's bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this "angle of turn" of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over pi and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.
桌子上的一个啤酒瓶或汽水罐,稍微倾斜并释放后,会落到直立位置,然后向上摇晃到有点相反的倾斜角度。从表面上看,这种摇晃运动涉及到容器的扁平圆形底部在摇晃到相反倾斜角度之前拍打桌子时的碰撞。敏锐的观察者会注意到,拍打后的上升倾斜角度通常并非与初始倾斜角度正好完全相反,而是会偏向一侧。库什曼和杜伊斯特马特[《正则混沌动力学》11, 31 (2006)]最近在一个具有滚动边界条件的扁平圆盘几乎平放着掉落时注意到了这种偏向现象。在这里,我们将这些滚动圆盘的结果推广到任意轴对称物体以及无摩擦滑动的情况。更具体地说,我们研究的运动几乎但并非完全涉及圆形容器底部与桌面的面朝下碰撞。这些运动涉及接触点围绕圆形底部的突然快速运动。令人惊讶的是,与滚动圆盘类似,这个接触点的净运动角度几乎与初始条件无关。这个转动角度仅取决于几何形状和质量分布,而不取决于关于对称轴的转动惯量。我们推导出了这个接触点“转动角度”的简单渐近公式,并用数值方法和简单实验对结果进行了验证。对于高容器(高度远大于半径),转动角度略大于π,这种突然的滚动运动表面上看起来像是几乎对称的碰撞,导致容器靠在底部边缘几乎完全相反的点上。