Suppr超能文献

双曲格上的渗流

Percolation on hyperbolic lattices.

作者信息

Baek Seung Ki, Minnhagen Petter, Kim Beom Jun

机构信息

Department of Theoretical Physics, Umeå University, 901 87 Umeå, Sweden.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011124. doi: 10.1103/PhysRevE.79.011124. Epub 2009 Jan 23.

Abstract

The percolation transitions on hyperbolic lattices are investigated numerically using finite-size scaling methods. The existence of two distinct percolation thresholds is verified. At the lower threshold, an unbounded cluster appears and reaches from the middle to the boundary. This transition is of the same type and has the same finite-size scaling properties as the corresponding transition for the Cayley tree. At the upper threshold, on the other hand, a single unbounded cluster forms which overwhelms all the others and occupies a finite fraction of the volume as well as of the boundary connections. The finite-size scaling properties for this upper threshold are different from those of the Cayley tree and two of the critical exponents are obtained. The results suggest that the percolation transition for the hyperbolic lattices forms a universality class of its own.

摘要

利用有限尺寸标度方法对双曲晶格上的渗流转变进行了数值研究。验证了两个不同渗流阈值的存在。在较低阈值处,出现一个无界簇,它从中间延伸到边界。这种转变与凯莱树的相应转变属于同一类型,并且具有相同的有限尺寸标度性质。另一方面,在较高阈值处,形成一个单一的无界簇,它压倒了所有其他簇,并占据了有限比例的体积以及边界连接。这个较高阈值的有限尺寸标度性质与凯莱树的不同,并且得到了两个临界指数。结果表明,双曲晶格的渗流转变形成了其自身的一个普适类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验