Suppr超能文献

利用电路量子电动力学对双曲空间进行量子模拟:从图到几何

Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry.

作者信息

Boettcher Igor, Bienias Przemyslaw, Belyansky Ron, Kollár Alicia J, Gorshkov Alexey V

机构信息

Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA.

Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA.

出版信息

Phys Rev A (Coll Park). 2020 Sep;102(3). doi: 10.1103/PhysRevA.102.032208.

Abstract

We show how quantum many-body systems on hyperbolic lattices with nearest-neighbor hopping and local interactions can be mapped onto quantum field theories in continuous negatively curved space. The underlying lattices have recently been realized experimentally with superconducting resonators and therefore allow for a table-top quantum simulation of quantum physics in curved background. Our mapping provides a computational tool to determine observables of the discrete system even for large lattices, where exact diagonalization fails. As an application and proof of principle we quantitatively reproduce the ground state energy, spectral gap, and correlation functions of the noninteracting lattice system by means of analytic formulas on the Poincaré disk, and show how conformal symmetry emerges for large lattices. This sets the stage for studying interactions and disorder on hyperbolic graphs in the future. Importantly, our analysis reveals that even relatively small discrete hyperbolic lattices emulate the continuous geometry of negatively curved space, and thus can be used to experimentally resolve fundamental open problems at the interface of interacting many-body systems, quantum field theory in curved space, and quantum gravity.

摘要

我们展示了具有最近邻跳跃和局域相互作用的双曲晶格上的量子多体系统如何被映射到连续负曲率空间中的量子场论。这些底层晶格最近已通过超导谐振器在实验中实现,因此能够在桌面环境下对弯曲背景中的量子物理进行量子模拟。我们的映射提供了一种计算工具,即使对于精确对角化失效的大晶格,也能确定离散系统的可观测量。作为原理的应用和证明,我们通过庞加莱圆盘上的解析公式定量地重现了无相互作用晶格系统的基态能量、能隙和关联函数,并展示了大晶格中如何出现共形对称性。这为未来研究双曲图上的相互作用和无序奠定了基础。重要的是,我们的分析表明,即使是相对较小的离散双曲晶格也能模拟负曲率空间的连续几何结构,因此可用于通过实验解决相互作用多体系统、弯曲空间中的量子场论和量子引力界面上的基本开放性问题。

相似文献

1
Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry.
Phys Rev A (Coll Park). 2020 Sep;102(3). doi: 10.1103/PhysRevA.102.032208.
2
Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models.
Phys Rev Lett. 2022 Jan 7;128(1):013601. doi: 10.1103/PhysRevLett.128.013601.
3
Hyperbolic lattices in circuit quantum electrodynamics.
Nature. 2019 Jul;571(7763):45-50. doi: 10.1038/s41586-019-1348-3. Epub 2019 Jul 3.
4
Hyperbolic matter in electrical circuits with tunable complex phases.
Nat Commun. 2023 Feb 4;14(1):622. doi: 10.1038/s41467-023-36359-6.
5
Hyperbolic Lattices and Two-Dimensional Yang-Mills Theory.
Phys Rev Lett. 2024 Oct 4;133(14):146601. doi: 10.1103/PhysRevLett.133.146601.
6
Quantum phase transitions of interacting bosons on hyperbolic lattices.
J Phys Condens Matter. 2021 Jun 29;33(33). doi: 10.1088/1361-648X/ac0a1a.
7
Automorphic Bloch theorems for hyperbolic lattices.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2116869119.
8
Simulating hyperbolic space on a circuit board.
Nat Commun. 2022 Jul 28;13(1):4373. doi: 10.1038/s41467-022-32042-4.
9
Efimov-like states and quantum funneling effects on synthetic hyperbolic surfaces.
Sci Bull (Beijing). 2021 Oct 15;66(19):1967-1972. doi: 10.1016/j.scib.2021.06.017. Epub 2021 Jun 19.
10
Topological Hyperbolic Lattices.
Phys Rev Lett. 2020 Jul 31;125(5):053901. doi: 10.1103/PhysRevLett.125.053901.

引用本文的文献

1
Hyperbolic photonic topological insulators.
Nat Commun. 2024 Feb 22;15(1):1647. doi: 10.1038/s41467-024-46035-y.
2
Hyperbolic band topology with non-trivial second Chern numbers.
Nat Commun. 2023 Feb 25;14(1):1083. doi: 10.1038/s41467-023-36767-8.
3
Hyperbolic matter in electrical circuits with tunable complex phases.
Nat Commun. 2023 Feb 4;14(1):622. doi: 10.1038/s41467-023-36359-6.
4
Bound vortex light in an emulated topological defect in photonic lattices.
Light Sci Appl. 2022 Aug 1;11(1):243. doi: 10.1038/s41377-022-00931-4.
5
Simulating hyperbolic space on a circuit board.
Nat Commun. 2022 Jul 28;13(1):4373. doi: 10.1038/s41467-022-32042-4.
6
Observation of novel topological states in hyperbolic lattices.
Nat Commun. 2022 May 26;13(1):2937. doi: 10.1038/s41467-022-30631-x.
7
Automorphic Bloch theorems for hyperbolic lattices.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2116869119.
8
Hyperbolic band theory.
Sci Adv. 2021 Sep 3;7(36):eabe9170. doi: 10.1126/sciadv.abe9170.

本文引用的文献

1
Interacting Qubit-Photon Bound States with Superconducting Circuits.
Phys Rev X. 2019;9(1). doi: 10.1103/physrevx.9.011021.
2
Hyperbolic lattices in circuit quantum electrodynamics.
Nature. 2019 Jul;571(7763):45-50. doi: 10.1038/s41586-019-1348-3. Epub 2019 Jul 3.
3
Quantum simulations with ultracold atoms in optical lattices.
Science. 2017 Sep 8;357(6355):995-1001. doi: 10.1126/science.aal3837.
4
Probing the Scale Invariance of the Inflationary Power Spectrum in Expanding Quasi-Two-Dimensional Dipolar Condensates.
Phys Rev Lett. 2017 Mar 31;118(13):130404. doi: 10.1103/PhysRevLett.118.130404. Epub 2017 Mar 30.
5
Entanglement renormalization for quantum fields in real space.
Phys Rev Lett. 2013 Mar 8;110(10):100402. doi: 10.1103/PhysRevLett.110.100402. Epub 2013 Mar 5.
6
Crossing on hyperbolic lattices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051141. doi: 10.1103/PhysRevE.85.051141. Epub 2012 May 29.
7
Measurement of stimulated Hawking emission in an analogue system.
Phys Rev Lett. 2011 Jan 14;106(2):021302. doi: 10.1103/PhysRevLett.106.021302. Epub 2011 Jan 10.
8
Realization of a sonic black hole analog in a Bose-Einstein condensate.
Phys Rev Lett. 2010 Dec 10;105(24):240401. doi: 10.1103/PhysRevLett.105.240401. Epub 2010 Dec 7.
9
Optics in curved space.
Phys Rev Lett. 2010 Oct 1;105(14):143901. doi: 10.1103/PhysRevLett.105.143901. Epub 2010 Sep 27.
10
Hyperbolic geometry of complex networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036106. doi: 10.1103/PhysRevE.82.036106. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验