Tönjes Ralf, Blasius Bernd
Institut für Physik, Universität Potsdam, 14415 Potsdam, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 2):016112. doi: 10.1103/PhysRevE.79.016112. Epub 2009 Jan 27.
The Kuramoto phase-diffusion equation is a nonlinear partial differential equation which describes the spatiotemporal evolution of a phase variable in an oscillatory reaction-diffusion system. Synchronization manifests itself in a stationary phase gradient where all phases throughout a system evolve with the same velocity, the synchronization frequency. The formation of concentric waves can be explained by local impurities of higher frequency which can entrain their surroundings. Concentric waves in synchronization also occur in heterogeneous systems, where the local frequencies are distributed randomly. We present a perturbation analysis of the synchronization frequency where the perturbation is given by the heterogeneity of natural frequencies in the system. The nonlinearity in the form of dispersion leads to an overall acceleration of the oscillation for which the expected value can be calculated from the second-order perturbation terms. We apply the theory to simple topologies, like a line or sphere, and deduce the dependence of the synchronization frequency on the size and the dimension of the oscillatory medium. We show that our theory can be extended to include rotating waves in a medium with periodic boundary conditions. By changing a system parameter, the synchronized state may become quasidegenerate. We demonstrate how perturbation theory fails at such a critical point.
仓本相位扩散方程是一个非线性偏微分方程,它描述了振荡反应扩散系统中相位变量的时空演化。同步表现为一个固定的相位梯度,在这个梯度中,系统中所有相位都以相同的速度演化,即同步频率。同心波的形成可以由较高频率的局部杂质来解释,这些杂质能够带动其周围的物质。同步中的同心波也会出现在非均匀系统中,在这种系统中局部频率是随机分布的。我们给出了同步频率的微扰分析,其中微扰由系统中固有频率的非均匀性给出。色散形式的非线性导致振荡的整体加速,其期望值可以从二阶微扰项计算得出。我们将该理论应用于简单的拓扑结构,如直线或球体,并推导同步频率对振荡介质的大小和维度的依赖性。我们表明,我们的理论可以扩展到包括具有周期性边界条件的介质中的旋转波。通过改变系统参数,同步状态可能会变得准简并。我们展示了微扰理论在这样一个临界点是如何失效的。