Suppr超能文献

Singular solutions of a modified two-component Camassa-Holm equation.

作者信息

Holm Darryl D, O Náraigh Lennon, Tronci Cesare

机构信息

Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 2):016601. doi: 10.1103/PhysRevE.79.016601. Epub 2009 Jan 5.

Abstract

The Camassa-Holm (CH) equation is a well-known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow a dependence on the average density as well as the pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in the velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially confined initial data. Numerical results for the MCH2 system are given and compared with the pure CH2 case. These numerics show that the modification in the MCH2 system to introduce the average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for the MCH2 system shows a different asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, the MCH2 system also allows the phase shift of the peakon collision to diverge in certain parameter regimes.

摘要

相似文献

1
Singular solutions of a modified two-component Camassa-Holm equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 2):016601. doi: 10.1103/PhysRevE.79.016601. Epub 2009 Jan 5.
2
Variational principles for stochastic soliton dynamics.随机孤子动力学的变分原理。
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150827. doi: 10.1098/rspa.2015.0827.
3
The string density problem and the Camassa-Holm equation.
Philos Trans A Math Phys Eng Sci. 2007 Sep 15;365(1858):2299-312. doi: 10.1098/rsta.2007.2010.
4
Undular bore solution of the Camassa-Holm equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 2):057602. doi: 10.1103/PhysRevE.73.057602. Epub 2006 May 4.
6
An integrable shallow water equation with linear and nonlinear dispersion.一个具有线性和非线性色散的可积浅水方程。
Phys Rev Lett. 2001 Nov 5;87(19):194501. doi: 10.1103/PhysRevLett.87.194501. Epub 2001 Oct 17.
7
A new two-component integrable system with peakon solutions.一个具有尖峰子解的新型两分量可积系统。
Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140750. doi: 10.1098/rspa.2014.0750.
8
Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036605. doi: 10.1103/PhysRevE.77.036605. Epub 2008 Mar 7.
9
Emergent singular solutions of nonlocal density-magnetization equations in one dimension.一维非局部密度 - 磁化方程的奇异解
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036211. doi: 10.1103/PhysRevE.77.036211. Epub 2008 Mar 18.
10
Soliton gas in bidirectional dispersive hydrodynamics.双向色散流体动力学中的孤子气体
Phys Rev E. 2021 Apr;103(4-1):042201. doi: 10.1103/PhysRevE.103.042201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验