Kozyreff G, Tlidi M, Mussot A, Louvergneaux E, Taki M, Vladimirov A G
Optique Nonlinéaire Théorique, Université libre de Bruxelles, C.P. 231, Campus Plaine, B-1050 Bruxelles, Belgium.
Phys Rev Lett. 2009 Jan 30;102(4):043905. doi: 10.1103/PhysRevLett.102.043905. Epub 2009 Jan 29.
We analyze the beating between intrinsic frequencies that are simultaneously generated by a modulation (Turing) instability in a nonlinear extended system. The model studied is that of a coherently driven photonic crystal fiber cavity. Beating in the form of a slow modulation of fast intensity oscillations is found to be stable for a wide range of parameters. We find that such beating can also be localized and contain only a finite number of slow modulations. These structures consist of dips in the amplitude of the fast intensity oscillations, which can either be isolated or regularly spaced. An asymptotic analysis close to the modulation instability threshold allows us to explain this phenomenon as a manifestation of homoclinic snaking for dissipative localized structures.
我们分析了非线性扩展系统中由调制(图灵)不稳定性同时产生的本征频率之间的拍频。所研究的模型是相干驱动的光子晶体光纤腔模型。发现以快速强度振荡的缓慢调制形式出现的拍频在很宽的参数范围内是稳定的。我们发现这种拍频也可以是局域化的,并且只包含有限数量的缓慢调制。这些结构由快速强度振荡幅度的凹陷组成,这些凹陷可以是孤立的,也可以是规则间隔的。接近调制不稳定性阈值的渐近分析使我们能够将这种现象解释为耗散局域结构的同宿蛇行的一种表现。