Bailey Nicholas P, Schrøder Thomas B, Dyre Jeppe C
Department of Sciences, DNRF Center "Glass and Time," Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark.
Phys Rev Lett. 2009 Feb 6;102(5):055701. doi: 10.1103/PhysRevLett.102.055701. Epub 2009 Feb 3.
We study the statistics of flow events in the inherent dynamics in supercooled two- and three-dimensional binary Lennard-Jones liquids. Distributions of changes of the collective quantities energy, pressure, and shear stress become exponential at low temperatures, as does that of the event "size" S identical with summation operator[under ][over ]d_{i};{2}. We show how the S distribution controls the others, while itself following from exponential tails in the distributions of (1) single particle displacements d, involving a Lindemann-like length d_{L} and (2) the number of active particles (with d>d_{L}).
我们研究了过冷二维和三维二元 Lennard-Jones 液体固有动力学中流动事件的统计特性。集体量能量、压力和剪应力变化的分布在低温下变为指数分布,与事件“大小”S(等同于对 d_{i}^{2}求和)的分布一样。我们展示了 S 分布如何控制其他分布,而其本身又源于(1)涉及 Lindemann 长度 d_{L}的单粒子位移 d 的分布以及(2)活性粒子数量(d > d_{L})分布中的指数尾部。