Goode Ellen L, Fridley Brooke L, Vierkant Robert A, Cunningham Julie M, Phelan Catherine M, Anderson Stephanie, Rider David N, White Kristin L, Pankratz V Shane, Song Honglin, Hogdall Estrid, Kjaer Susanne K, Whittemore Alice S, DiCioccio Richard, Ramus Susan J, Gayther Simon A, Schildkraut Joellen M, Pharaoh Paul P D, Sellers Thomas A
Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, MN 55905, USA.
Cancer Epidemiol Biomarkers Prev. 2009 Mar;18(3):935-44. doi: 10.1158/1055-9965.EPI-08-0860. Epub 2009 Mar 3.
Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from existing genotype data, we conducted a combined analysis of five independent studies of invasive epithelial ovarian cancer. Up to 2,120 cases and 3,382 controls were genotyped in the course of two collaborations at a variety of SNPs in 11 cell cycle genes (CDKN2C, CDKN1A, CCND3, CCND1, CCND2, CDKN1B, CDK2, CDK4, RB1, CDKN2D, and CCNE1) and one gene region (CDKN2A-CDKN2B). Because of the semi-overlapping nature of the 123 assayed tagging SNPs, we performed multiple imputation based on fastPHASE using data from White non-Hispanic study participants and participants in the international HapMap Consortium and National Institute of Environmental Health Sciences SNPs Program. Logistic regression assuming a log-additive model was done on combined and imputed data. We observed strengthened signals in imputation-based analyses at several SNPs, particularly CDKN2A-CDKN2B rs3731239; CCND1 rs602652, rs3212879, rs649392, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls.
对细胞周期控制至关重要的基因多态性是与卵巢癌风险相关的突出候选因素;多个研究小组使用不同的标签单核苷酸多态性(SNP)集对众多基因进行了研究。为了从现有基因型数据中获取最大信息量,我们对五项侵袭性上皮性卵巢癌的独立研究进行了联合分析。在两项合作过程中,对多达2120例病例和3382例对照进行了基因分型,检测了11个细胞周期基因(CDKN2C、CDKN1A、CCND3、CCND1、CCND2、CDKN1B、CDK2、CDK4、RB1、CDKN2D和CCNE1)以及一个基因区域(CDKN2A - CDKN2B)中的多种SNP。由于所检测的123个标签SNP具有半重叠性质,我们基于fastPHASE,利用来自非西班牙裔白人研究参与者以及国际人类基因组单体型图协会和美国国立环境卫生科学研究所SNP计划参与者的数据进行了多次插补。对合并和插补后的数据采用对数相加模型进行逻辑回归分析。我们在基于插补的分析中观察到几个SNP的信号增强,特别是CDKN2A - CDKN2B的rs3731239;CCND1的rs602652、rs3212879、rs649392和rs3212891;CDK2的rs2069391、rs2069414和rs17528736;以及CCNE1的rs3218036。这些结果证明了插补在候选基因研究中的实用性,并为细胞周期基因在卵巢癌病因学中的作用提供了证据,还建议在更多病例和对照中针对一组减少的SNP进行研究。