Suppr超能文献

估计多重比较中真零假设的比例。

Estimating the proportion of true null hypotheses for multiple comparisons.

作者信息

Jiang Hongmei, Doerge R W

机构信息

Department of Statistics, Northwestern University, Evanston, IL 60208, USA.

出版信息

Cancer Inform. 2008;6:25-32. Epub 2008 Feb 14.

Abstract

Whole genome microarray investigations (e.g. differential expression, differential methylation, ChIP-Chip) provide opportunities to test millions of features in a genome. Traditional multiple comparison procedures such as familywise error rate (FWER) controlling procedures are too conservative. Although false discovery rate (FDR) procedures have been suggested as having greater power, the control itself is not exact and depends on the proportion of true null hypotheses. Because this proportion is unknown, it has to be accurately (small bias, small variance) estimated, preferably using a simple calculation that can be made accessible to the general scientific community. We propose an easy-to-implement method and make the R code available, for estimating the proportion of true null hypotheses. This estimate has relatively small bias and small variance as demonstrated by (simulated and real data) comparing it with four existing procedures. Although presented here in the context of microarrays, this estimate is applicable for many multiple comparison situations.

摘要

全基因组微阵列研究(例如差异表达、差异甲基化、染色质免疫沉淀芯片技术)为检测基因组中的数百万个特征提供了机会。传统的多重比较程序,如控制家族性错误率(FWER)的程序过于保守。尽管有人提出错误发现率(FDR)程序具有更强的功效,但这种控制本身并不精确,并且取决于真零假设的比例。由于这个比例是未知的,所以必须对其进行准确(偏差小、方差小)的估计,最好使用一种普通科学界都能理解的简单计算方法。我们提出了一种易于实施的方法,并提供了R代码,用于估计真零假设的比例。与四种现有程序相比(通过模拟数据和实际数据),该估计值具有相对较小的偏差和方差。尽管这里是在微阵列的背景下介绍的,但这种估计适用于许多多重比较情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/593d/2623313/55bdd283f7f2/cin-6-0025f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验