Suppr超能文献

短tau反转恢复磁共振成像对头颈部鳞状细胞癌颈部淋巴结转移患者分期及治疗的临床影响

Clinical impact of short tau inversion recovery MRI on staging and management in patients with cervical lymph node metastases of head and neck squamous cell carcinomas.

作者信息

de Bondt Bert-Jan, Stokroos Robert, Casselman Jan W, van Engelshoven Jos M A, Beets-Tan Regina G H, Kessels Fons G H

机构信息

Department of Radiology, University Hospital Maastricht, Maastricht, The Netherlands.

出版信息

Head Neck. 2009 Jul;31(7):928-37. doi: 10.1002/hed.21060.

Abstract

BACKGROUND

We investigated the incremental diagnostic value of short tau inversion recovery (STIR) MRI to detect cervical nodal metastases in head and neck squamous cell carcinoma.

METHODS

Thirty-six patients with cervical nodal metastases underwent MRI preceding neck dissection. Two readers evaluated MRI versus MRI with STIR. Level-based analysis was performed: interobserver agreements (kappa) for detecting normal and metastatic lymph nodes; sensitivities and specificities for detecting at least 1 metastatic lymph node per level; linear regression analysis to determine performances of MRI with STIR in detecting correct numbers of normal and metastatic lymph nodes. Histopathology was the reference standard.

RESULTS

One hundred eighty neck levels were evaluated. MRI with STIR showed better kappas for metastatic and normal lymph nodes, was more accurate to estimate numbers of metastatic and normal lymph nodes, and showed improvement of sensitivities and specificities.

CONCLUSION

Incorporation of STIR into the conventional MR protocol significantly improves the detection of cervical lymph node metastases.

摘要

背景

我们研究了短tau反转恢复(STIR)磁共振成像(MRI)在检测头颈部鳞状细胞癌颈部淋巴结转移方面的增量诊断价值。

方法

36例有颈部淋巴结转移的患者在颈部清扫术前接受了MRI检查。两名阅片者对常规MRI与STIR-MRI进行评估。进行基于层面的分析:检测正常和转移淋巴结的观察者间一致性(kappa值);每层检测至少1个转移淋巴结的敏感性和特异性;线性回归分析以确定STIR-MRI在检测正常和转移淋巴结正确数量方面的表现。组织病理学为参考标准。

结果

共评估了180个颈部层面。STIR-MRI在转移和正常淋巴结方面显示出更好的kappa值,在估计转移和正常淋巴结数量方面更准确,并且敏感性和特异性有所提高。

结论

将STIR纳入传统MR检查方案可显著提高颈部淋巴结转移的检测率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验