Chara Osvaldo, Pafundo Diego E, Schwarzbaum Pablo J
Instituto de Física de Líquidos y Sistemas Biológicos (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de la Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina.
Bull Math Biol. 2009 Jul;71(5):1025-47. doi: 10.1007/s11538-008-9392-4. Epub 2009 Mar 5.
In goldfish hepatocytes, hypotonic exposure leads to cell swelling, followed by a compensatory shrinkage termed RVD. It has been previously shown that ATP is accumulated in the extracellular medium of swollen cells in a non-linear fashion, and that extracellular ATP (ATPe) is an essential intermediate to trigger RVD. Thus, to understand how RVD proceeds in goldfish hepatocytes, we developed two mathematical models accounting for the experimental ATPe kinetics reported recently by Pafundo et al. in Am. J. Physiol. 294, R220-R233, 2008. Four different equations for ATPe fluxes were built to account for the release of ATP by lytic (J(L)) and nonlytic mechanisms (J(NL)), ATPe diffusion (J(D)), and ATPe consumption by ectonucleotidases (J(V)). Particular focus was given to J(NL), defined as the product of a time function (J(R)) and a positive feedback mechanism whereby ATPe amplifies J(NL). Several J (R) functions (Constant, Step, Impulse, Gaussian, and Lognormal) were studied. Models were tested without (model 1) or with (model 2) diffusion of ATPe. Mathematical analysis allowed us to get a general expression for each of the models. Subsequently, by using model dependent fit (simulations) as well as model analysis at infinite time, we observed that: - use of J(D) does not lead to improvements of the models. - Constant and Step time functions are only applicable when J(R)=0 (and thus, J(NL)=0), so that the only source of ATPe would be J(L), a result incompatible with experimental data. - use of impulse, Gaussian, and lognormal J(R)s in the models led to reasonable good fits to experimental data, with the lognormal function in model 1 providing the best option. Finally, the predictive nature of model 1 loaded with a lognormal J(R) was tested by simulating different putative in vivo scenarios where J(V) and J(NL) were varied over ample ranges.
在金鱼肝细胞中,低渗暴露会导致细胞肿胀,随后出现一种称为调节性容积减小(RVD)的代偿性收缩。先前已经表明,ATP以非线性方式在肿胀细胞的细胞外介质中积累,并且细胞外ATP(ATPe)是触发RVD的必需中间物质。因此,为了了解金鱼肝细胞中RVD的过程,我们建立了两个数学模型,以解释Pafundo等人最近在《美国生理学杂志》294卷,R220 - R233页(2008年)报道的实验性ATPe动力学。构建了四个不同的ATPe通量方程,以解释通过溶解机制(J(L))和非溶解机制(J(NL))释放的ATP、ATPe扩散(J(D))以及外切核苷酸酶消耗的ATPe(J(V))。特别关注J(NL),它被定义为一个时间函数(J(R))与一个正反馈机制的乘积,通过该正反馈机制,ATPe会放大J(NL)。研究了几种J (R)函数(常数、阶跃、脉冲、高斯和对数正态)。在不考虑(模型1)或考虑(模型2)ATPe扩散的情况下对模型进行了测试。数学分析使我们能够得到每个模型的一般表达式。随后,通过使用依赖模型的拟合(模拟)以及在无限时间的模型分析,我们观察到: - 使用J(D)并不会改进模型。 - 常数和阶跃时间函数仅在J(R)=0(因此,J(NL)=0)时适用,这样ATPe的唯一来源将是J(L),这一结果与实验数据不相符。 - 在模型中使用脉冲、高斯和对数正态J(R)能较好地拟合实验数据,模型1中的对数正态函数提供了最佳选择。最后,通过模拟不同的假定体内情况来测试加载对数正态J(R)的模型1的预测能力,在这些情况下J(V)和J(NL)在很大范围内变化。