Suppr超能文献

关于使用红外光谱法直接鉴定伊比利亚猪育肥日粮的可行性研究。

Feasibility study on the use of infrared spectroscopy for the direct authentication of Iberian pig fattening diet.

作者信息

Arce Lourdes, Domínguez-Vidal Ana, Rodríguez-Estévez Vicente, López-Vidal Silvia, Ayora-Cañada María José, Valcárcel Miguel

机构信息

Department of Analytical Chemistry, University of Córdoba, Annex C3 Building, Campus of Rabanales, E-14071 Córdoba, Spain.

出版信息

Anal Chim Acta. 2009 Mar 23;636(2):183-9. doi: 10.1016/j.aca.2009.01.058. Epub 2009 Feb 5.

Abstract

The feasibility of using both middle- and near-infrared spectroscopy for discrimination between subcutaneous fat of Iberian pigs reared on different fattening diets has been evaluated. The sample set was formed by subcutaneous fat of pigs fattened outdoors (extensively) with natural resources (montanera) and pigs fattened on commercial feeds, either with standard feed or with especial formulations with higher content in oleic acid (HO-formulated feed). Linear discriminant analysis was used to classify the samples according to the fattening diet using the scores obtained from principal component analysis of near- and middle-infrared spectra as variables to construct the discriminant functions. The most influential variables were identified using a stepwise procedure. The discriminant potential of each spectral region was investigated. Best results were obtained with the combination of both regions with 91.7% of the standard feed and 100% of montanera and HO-formulated feed samples correctly classified. Chemical explanations are provided based on the correlation of these variables with fatty acid content in the samples.

摘要

评估了使用中红外光谱和近红外光谱鉴别以不同育肥日粮饲养的伊比利亚猪皮下脂肪的可行性。样本集由户外(粗放型)以自然资源育肥(蒙塔内拉)的猪的皮下脂肪以及以标准饲料或油酸含量更高的特殊配方(高油酸配方饲料)的商业饲料育肥的猪的皮下脂肪组成。使用线性判别分析,以近红外光谱和中红外光谱主成分分析获得的分数为变量构建判别函数,根据育肥日粮对样本进行分类。通过逐步程序确定最具影响力的变量。研究了每个光谱区域的判别潜力。两个区域相结合获得了最佳结果,标准饲料样本的正确分类率为91.7%,蒙塔内拉和高油酸配方饲料样本的正确分类率为100%。基于这些变量与样本中脂肪酸含量的相关性给出了化学解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验