Suppr超能文献

稳态动力学建模限制细胞静息状态和动态行为。

Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.

作者信息

Purvis Jeremy E, Radhakrishnan Ravi, Diamond Scott L

机构信息

Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

出版信息

PLoS Comput Biol. 2009 Mar;5(3):e1000298. doi: 10.1371/journal.pcbi.1000298. Epub 2009 Mar 6.

Abstract

A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.

摘要

活细胞的一个决定性特征是能够在对外部刺激做出动态反应的同时,在静息条件下维持体内平衡。在单一动力学模型中捕捉这两个特征很困难,因为该模型必须能够使用同一组分子成分来重现这两种行为。在这里,我们展示了如何将小型、定义明确的稳态网络相结合,提供一种构建大规模动力学模型的有效方法,该模型表现出逼真的静息和动态行为。通过要求每个动力学模块是稳态的(在静息条件下处于稳态),该方法按以下步骤进行:(i)计算每个模块常微分方程组的稳态解;(ii)对每组解应用主成分分析,以捕捉每个模块网络的稳态解空间;(iii)组合所有模块的最优搜索方向,形成一个全局稳态空间,在该空间中搜索以精确模拟整个系统在受到扰动时的时间相关行为。重要的是,这种逐步方法保留了控制系统中每个反应的非线性速率表达式,并对全尺寸模型允许的浓度状态范围施加约束。这些约束不仅降低了拟合实验时间序列数据的计算成本,还能深入了解系统浓度和结构的局限性。为了证明该方法的应用,我们展示了血小板P2Y(1)信号传导模块化模型中的小动力学扰动如何对细胞静息状态产生广泛的补偿作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5301/2637974/0f9454417449/pcbi.1000298.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验