Csaszar Elizabeth, Gavigan Geneviève, Ungrin Mark, Thérien Cynthia, Dubé Pascale, Féthière James, Sauvageau Guy, Roy Denis Claude, Zandstra Peter W
Institute of Biomaterials and Biomedical Engineering, University of Toronto, TD-CCBR Rm. 1116, 160 College Street, Toronto, Ontario, Canada M5S 3E1.
Biotechnol Bioeng. 2009 Jun 1;103(2):402-12. doi: 10.1002/bit.22297.
An automated delivery system for cell culture applications would permit studying more complex culture strategies and simplify measures taken to expose cells to unstable molecules. We are interested in understanding how intracellular TAT-HOXB4 protein concentration affects hematopoietic stem cell (HSC) fate; however, current manual dosing strategies of this unstable protein are labor intensive and produce wide concentration ranges which may not promote optimal growth. In this study we describe a programmable automated delivery system that was designed to integrate into a clinically relevant, single-use, closed-system bioprocess and facilitate transcription factor delivery studies. The development of a reporter cell assay allowed for kinetic studies to determine the intracellular (1.4 +/- 0.2 h) and extracellular (3.7 +/- 1.8 h and 78 +/- 27 h at 37 degrees C and 4 degrees C, respectively) half-lives of TAT-HOXB4 activity. These kinetic parameters were incorporated into a mathematical model, which was used to predict the dynamic intracellular concentration of TAT-HOXB4 and optimize the delivery of the protein. The automated system was validated for primary cell culture using human peripheral blood patient samples. Significant expansion of human primitive progenitor cells was obtained upon addition of TAT-HOXB4 without user intervention. The delivery system is thus capable of being used as a clinically relevant tool for the exploration and optimization of temporally sensitive stem cell culture systems.
一种用于细胞培养应用的自动输送系统将有助于研究更复杂的培养策略,并简化使细胞接触不稳定分子的操作。我们感兴趣的是了解细胞内TAT-HOXB4蛋白浓度如何影响造血干细胞(HSC)的命运;然而,目前对这种不稳定蛋白进行手动给药的策略需要耗费大量人力,并且会产生较宽的浓度范围,这可能无法促进最佳生长。在本研究中,我们描述了一种可编程的自动输送系统,该系统旨在集成到临床相关的一次性封闭系统生物工艺中,并便于进行转录因子输送研究。一种报告细胞检测方法的开发使得能够进行动力学研究,以确定TAT-HOXB4活性在细胞内的半衰期(1.4±0.2小时)以及在细胞外的半衰期(在37℃和4℃时分别为3.7±1.8小时和78±27小时)。这些动力学参数被纳入一个数学模型,该模型用于预测TAT-HOXB4在细胞内的动态浓度,并优化该蛋白的输送。该自动系统使用人类外周血患者样本进行了原代细胞培养验证。在添加TAT-HOXB4后,无需用户干预即可实现人类原始祖细胞的显著扩增。因此,该输送系统能够作为一种临床相关工具,用于探索和优化对时间敏感的干细胞培养系统。