Lenaz Giorgio, Genova Maria Luisa
Dipartimento di Biochimica G. Moruzzi, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
Biochim Biophys Acta. 2009 Jun;1787(6):563-73. doi: 10.1016/j.bbabio.2009.02.019. Epub 2009 Mar 4.
The kinetic analysis by Kröger and Klingenberg on electron transfer in the Coenzyme Q region led to the conclusion that the quinone behaves kinetically as a homogeneous pool freely diffusing in the lipid bilayer, thus setting the basis for the widely accepted random diffusion model of electron transfer. The recent description of supramolecular complexes of the respiratory chain enzymes, in particular Complex I-III supercomplexes, has reopened the problem of electron transfer in the Coenzyme Q region. Flux control analysis has revealed that Complexes I and III indeed function as a single unit indicating substrate channelling by Coenzyme Q in transferring electrons from Complex I to Complex III. In this review we analyse in detail the reasons that suggested Coenzyme Q pool behaviour; although electron transfer between Complexes I and III indeed appears to be effected by substrate channelling, the Coenzyme Q pool is in equilibrium with bound quinone and is required to fill the site(s) within the supercomplex. In addition, the pool equation of Kröger and Klingenberg still describes in the most adequate way the electron transfer from Complex II and other Coenzyme Q-reducing enzymes to Complex III, besides the energy-dependent reverse electron transfer from Complex II to Complex I.
克罗格(Kröger)和克林根贝格(Klingenberg)对辅酶Q区域电子转移的动力学分析得出结论,醌在动力学上表现为在脂质双层中自由扩散的均匀池,从而为广泛接受的电子转移随机扩散模型奠定了基础。最近对呼吸链酶超分子复合物,特别是复合物I-III超复合物的描述,重新开启了辅酶Q区域电子转移的问题。通量控制分析表明,复合物I和III确实作为一个单一单元起作用,表明辅酶Q在将电子从复合物I转移到复合物III时存在底物通道化现象。在这篇综述中,我们详细分析了表明辅酶Q池行为的原因;尽管复合物I和III之间的电子转移确实似乎是由底物通道化实现的,但辅酶Q池与结合醌处于平衡状态,并且需要填充超复合物内的位点。此外,克罗格和克林根贝格的池方程仍然以最恰当的方式描述了从复合物II和其他辅酶Q还原酶到复合物III的电子转移,以及从复合物II到复合物I的能量依赖性逆向电子转移。