Suppr超能文献

一种微小核糖核酸病毒的环对环复制复合体。

A picornaviral loop-to-loop replication complex.

作者信息

Claridge Jolyon K, Headey Stephen J, Chow John Y H, Schwalbe Martin, Edwards Patrick J, Jeffries Cy M, Venugopal Hariprasad, Trewhella Jill, Pascal Steven M

机构信息

Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.

出版信息

J Struct Biol. 2009 Jun;166(3):251-62. doi: 10.1016/j.jsb.2009.02.010. Epub 2009 Mar 4.

Abstract

Picornaviruses replicate their RNA genomes through a highly conserved mechanism that involves an interaction between the principal viral protease (3C(pro)) and the 5'-UTR region of the viral genome. The 3C(pro) catalytic site is the target of numerous replication inhibitors. This paper describes the first structural model of a complex between a picornaviral 3C(pro) and a region of the 5'-UTR, stem-loop D (SLD). Using human rhinovirus as a model system, we have combined NMR contact information, small-angle X-ray scattering (SAXS) data, and previous mutagenesis results to determine the shape, position and relative orientation of the 3C(pro) and SLD components. The results clearly identify a 1:1 binding stoichiometry, with pronounced loops from each molecule providing the key binding determinants for the interaction. Binding between SLD and 3C(pro) induces structural changes in the proteolytic active site that is positioned on the opposite side of the protease relative to the RNA/protein interface, suggesting that subtle conformational changes affecting catalytic activity are relayed through the protein.

摘要

微小核糖核酸病毒通过一种高度保守的机制复制其RNA基因组,该机制涉及主要病毒蛋白酶(3C蛋白酶)与病毒基因组5'-UTR区域之间的相互作用。3C蛋白酶催化位点是众多复制抑制剂的作用靶点。本文描述了微小核糖核酸病毒3C蛋白酶与5'-UTR区域茎环D(SLD)之间复合物的首个结构模型。以人鼻病毒作为模型系统,我们结合了核磁共振接触信息、小角X射线散射(SAXS)数据以及先前的诱变结果,以确定3C蛋白酶和SLD组分的形状、位置及相对取向。结果清楚地确定了1:1的结合化学计量比,每个分子上明显的环为相互作用提供了关键的结合决定因素。SLD与3C蛋白酶之间的结合在蛋白酶相对于RNA/蛋白质界面的另一侧的蛋白水解活性位点诱导了结构变化,这表明影响催化活性的细微构象变化是通过蛋白质传递的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/390f/7172786/f526295d37c9/gr1.jpg

相似文献

1
A picornaviral loop-to-loop replication complex.
J Struct Biol. 2009 Jun;166(3):251-62. doi: 10.1016/j.jsb.2009.02.010. Epub 2009 Mar 4.
3
5
A Novel Enterovirus 71 (EV71) Virulence Determinant: The 69th Residue of 3C Protease Modulates Pathogenicity.
Front Cell Infect Microbiol. 2017 Feb 3;7:26. doi: 10.3389/fcimb.2017.00026. eCollection 2017.
6
Inhibitory antibodies identify unique sites of therapeutic vulnerability in rhinovirus and other enteroviruses.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13499-13508. doi: 10.1073/pnas.1918844117. Epub 2020 May 28.
7
Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein.
Structure. 2016 Apr 5;24(4):509-517. doi: 10.1016/j.str.2016.02.019.
8
Crystal structure of human enterovirus 71 3C protease.
J Mol Biol. 2011 May 6;408(3):449-61. doi: 10.1016/j.jmb.2011.03.007. Epub 2011 Mar 17.
9
Structural basis for antiviral inhibition of the main protease, 3C, from human enterovirus 93.
J Virol. 2011 Oct;85(20):10764-73. doi: 10.1128/JVI.05062-11. Epub 2011 Aug 10.

引用本文的文献

1
Tools shaping drug discovery and development.
Biophys Rev (Melville). 2022 Jul 27;3(3):031301. doi: 10.1063/5.0087583. eCollection 2022 Sep.
2
Allosteric regulation of Senecavirus A 3Cpro proteolytic activity by an endogenous phospholipid.
PLoS Pathog. 2023 May 30;19(5):e1011411. doi: 10.1371/journal.ppat.1011411. eCollection 2023 May.
3
Role of RNA Domain Structure and Orientation in the Coxsackievirus B3 Virulence Phenotype.
J Virol. 2023 May 31;97(5):e0044823. doi: 10.1128/jvi.00448-23. Epub 2023 Apr 19.
4
The DHAV-1 protein VP1 interacts with PI3KC3 to induce autophagy through the PI3KC3 complex.
Vet Res. 2022 Aug 17;53(1):64. doi: 10.1186/s13567-022-01081-6.
6
Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins.
Microbiol Mol Biol Rev. 2020 Mar 18;84(2). doi: 10.1128/MMBR.00062-19. Print 2020 May 20.
7
Conformational flexibility in the enterovirus RNA replication platform.
RNA. 2019 Mar;25(3):376-387. doi: 10.1261/rna.069476.118. Epub 2018 Dec 21.
8
Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein.
Structure. 2016 Apr 5;24(4):509-517. doi: 10.1016/j.str.2016.02.019.
9
Nucleic acid structure characterization by small angle X-ray scattering (SAXS).
Curr Protoc Nucleic Acid Chem. 2012 Dec;Chapter 7:Unit7.18. doi: 10.1002/0471142700.nc0718s51.
10
Functional binding of hexanucleotides to 3C protease of hepatitis A virus.
Nucleic Acids Res. 2012 Apr;40(7):3042-55. doi: 10.1093/nar/gkr1152. Epub 2011 Dec 10.

本文引用的文献

1
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
3
Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. 1990.
J Magn Reson. 2011 Dec;213(2):423-41. doi: 10.1016/j.jmr.2011.09.004.
4
Single Transition-to-single Transition Polarization Transfer (ST2-PT) in [15N,1H]-TROSY.
J Biomol NMR. 1998 Aug;12(2):345-8. doi: 10.1023/A:1008268930690.
5
Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation.
J Biol Chem. 2008 Nov 7;283(45):30677-88. doi: 10.1074/jbc.M806101200. Epub 2008 Sep 8.
6
Small-angle X-ray scattering reveals the N-terminal domain organization of cardiac myosin binding protein C.
J Mol Biol. 2008 Apr 4;377(4):1186-99. doi: 10.1016/j.jmb.2008.01.080. Epub 2008 Feb 4.
7
Identification of the oriI-binding site of poliovirus 3C protein by nuclear magnetic resonance spectroscopy.
J Virol. 2008 May;82(9):4363-70. doi: 10.1128/JVI.02087-07. Epub 2008 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验