Suppr超能文献

人肠道病毒 93 主要蛋白酶 3C 的抗病毒抑制结构基础。

Structural basis for antiviral inhibition of the main protease, 3C, from human enterovirus 93.

机构信息

Institute for Research in Biomedicine, Barcelona, Spain.

出版信息

J Virol. 2011 Oct;85(20):10764-73. doi: 10.1128/JVI.05062-11. Epub 2011 Aug 10.

Abstract

Members of the Enterovirus genus of the Picornaviridae family are abundant, with common human pathogens that belong to the rhinovirus (HRV) and enterovirus (EV) species, including diverse echo-, coxsackie- and polioviruses. They cause a wide spectrum of clinical manifestations ranging from asymptomatic to severe diseases with neurological and/or cardiac manifestations. Pandemic outbreaks of EVs may be accompanied by meningitis and/or paralysis and can be fatal. However, no effective prophylaxis or antiviral treatment against most EVs is available. The EV RNA genome directs the synthesis of a single polyprotein that is autocatalytically processed into mature proteins at Gln↓Gly cleavage sites by the 3C protease (3C(pro)), which has narrow, conserved substrate specificity. These cleavages are essential for virus replication, making 3C(pro) an excellent target for antivirus drug development. In this study, we report the first determination of the crystal structure of 3C(pro) from an enterovirus B, EV-93, a recently identified pathogen, alone and in complex with the anti-HRV molecules compound 1 (AG7404) and rupintrivir (AG7088) at resolutions of 1.9, 1.3, and 1.5 Å, respectively. The EV-93 3C(pro) adopts a chymotrypsin-like fold with a canonically configured oxyanion hole and a substrate binding pocket similar to that of rhino-, coxsackie- and poliovirus 3C proteases. We show that compound 1 and rupintrivir are both active against EV-93 in infected cells and inhibit the proteolytic activity of EV-93 3C(pro) in vitro. These results provide a framework for further structure-guided optimization of the tested compounds to produce antiviral drugs against a broad range of EV species.

摘要

肠道病毒属是小核糖核酸病毒科的一个成员,其中有许多常见的人类病原体,包括鼻病毒(HRV)和肠道病毒(EV),包括各种回声、柯萨奇和脊髓灰质炎病毒。它们引起广泛的临床表现,从无症状到有神经和/或心脏表现的严重疾病。肠道病毒的大流行爆发可能伴有脑膜炎和/或瘫痪,并且可能是致命的。然而,大多数肠道病毒都没有有效的预防或抗病毒治疗方法。肠道病毒 RNA 基因组指导合成一种单一的多蛋白,该多蛋白在 Gln↓Gly 切割位点由 3C 蛋白酶(3C(pro)) 自身催化加工成成熟蛋白,3C(pro) 具有狭窄、保守的底物特异性。这些切割对于病毒复制至关重要,使得 3C(pro) 成为抗病毒药物开发的理想靶点。在这项研究中,我们首次单独和与抗 HRV 分子化合物 1(AG7404)和鲁匹那韦(AG7088)一起确定了来自肠道病毒 B、EV-93 的 3C(pro)的晶体结构,分辨率分别为 1.9、1.3 和 1.5 Å。EV-93 3C(pro) 采用类似于胰凝乳蛋白酶的折叠,具有经典构象的氧阴离子穴和与鼻病毒、柯萨奇病毒和脊髓灰质炎病毒 3C 蛋白酶相似的底物结合口袋。我们表明,化合物 1 和鲁匹那韦在感染细胞中均对 EV-93 有效,并抑制 EV-93 3C(pro) 在体外的蛋白水解活性。这些结果为进一步基于结构的优化提供了框架,以产生针对广泛的肠道病毒物种的抗病毒药物。

相似文献

1
Structural basis for antiviral inhibition of the main protease, 3C, from human enterovirus 93.
J Virol. 2011 Oct;85(20):10764-73. doi: 10.1128/JVI.05062-11. Epub 2011 Aug 10.
4
Structures of Enterovirus 71 3C proteinase (strain E2004104-TW-CDC) and its complex with rupintrivir.
Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):866-71. doi: 10.1107/S0907444913002862. Epub 2013 Apr 19.
6
Pan-3C Protease Inhibitor Rupintrivir Binds SARS-CoV-2 Main Protease in a Unique Binding Mode.
Biochemistry. 2021 Oct 5;60(39):2925-2931. doi: 10.1021/acs.biochem.1c00414. Epub 2021 Sep 10.
7
Structure of the HRV-C 3C-Rupintrivir Complex Provides New Insights for Inhibitor Design.
Virol Sin. 2020 Aug;35(4):445-454. doi: 10.1007/s12250-020-00196-4. Epub 2020 Feb 26.
9
In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease.
Antimicrob Agents Chemother. 1999 Oct;43(10):2444-50. doi: 10.1128/AAC.43.10.2444.

引用本文的文献

1
Structure of coxsackievirus cloverleaf RNA and 3C dimer establishes the RNA-binding mechanism of enterovirus protease 3C.
Sci Adv. 2025 Mar 14;11(11):eads6862. doi: 10.1126/sciadv.ads6862. Epub 2025 Mar 12.
2
Structural Analysis of Inhibitor Binding to Enterovirus-D68 3C Protease.
Viruses. 2025 Jan 8;17(1):75. doi: 10.3390/v17010075.
3
Crystal structures of the 3C proteases from Coxsackievirus B3 and B4.
Acta Crystallogr F Struct Biol Commun. 2024 Aug 1;80(Pt 8):183-190. doi: 10.1107/S2053230X24006915. Epub 2024 Jul 25.
5
Structure and inhibition of SARS-CoV-1 and SARS-CoV-2 main proteases by oral antiviral compound AG7404.
Antiviral Res. 2022 Dec;208:105458. doi: 10.1016/j.antiviral.2022.105458. Epub 2022 Nov 3.
6
Viral proteases: Structure, mechanism and inhibition.
Enzymes. 2021;50:301-333. doi: 10.1016/bs.enz.2021.09.004. Epub 2021 Nov 17.
7
DWV Infection Using Honey Bee Pupal Tissue.
Front Microbiol. 2021 Feb 10;12:631889. doi: 10.3389/fmicb.2021.631889. eCollection 2021.
8
Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins.
Microbiol Mol Biol Rev. 2020 Mar 18;84(2). doi: 10.1128/MMBR.00062-19. Print 2020 May 20.
10
Emerging Role of Proteases in the Pathogenesis of Chronic Rhinosinusitis with Nasal Polyps.
Front Cell Infect Microbiol. 2018 Jan 12;7:538. doi: 10.3389/fcimb.2017.00538. eCollection 2017.

本文引用的文献

1
Viral cysteine proteinases.
Perspect Drug Discov Des. 1996;6(1):64-86. doi: 10.1007/BF02174046.
2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Crystal structure of human enterovirus 71 3C protease.
J Mol Biol. 2011 May 6;408(3):449-61. doi: 10.1016/j.jmb.2011.03.007. Epub 2011 Mar 17.
4
Picornavirus non-structural proteins as targets for new anti-virals with broad activity.
Antiviral Res. 2011 Mar;89(3):204-18. doi: 10.1016/j.antiviral.2010.12.007. Epub 2011 Jan 12.
5
Practical application of bioinformatics by the multidisciplinary VIZIER consortium.
Antiviral Res. 2010 Aug;87(2):95-110. doi: 10.1016/j.antiviral.2010.02.005. Epub 2010 Feb 11.
6
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
7
electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation.
Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1074-80. doi: 10.1107/S0907444909029436. Epub 2009 Sep 16.
8
Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds.
J Biol Chem. 2009 Mar 20;284(12):7646-55. doi: 10.1074/jbc.M807947200. Epub 2009 Jan 14.
9
Enterovirus 71 infection: a new threat to global public health?
Lancet Neurol. 2008 Oct;7(10):868-9. doi: 10.1016/S1474-4422(08)70207-2.
10
Selective inhibitors of picornavirus replication.
Med Res Rev. 2008 Nov;28(6):823-84. doi: 10.1002/med.20125.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验