Hildebrand Mark, Kim Sang, Shi Dan, Scott Keana, Subramaniam Sriram
Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr., La Jolla, CA 92093, USA.
J Struct Biol. 2009 Jun;166(3):316-28. doi: 10.1016/j.jsb.2009.02.014. Epub 2009 Mar 6.
Ion-abrasion scanning electron microscopy (IASEM) takes advantage of focused ion beams to abrade thin sections from the surface of bulk specimens, coupled with SEM to image the surface of each section, enabling 3D reconstructions of subcellular architecture at approximately 30nm resolution. Here, we report the first application of IASEM for imaging a biomineralizing organism, the marine diatom Thalassiosira pseudonana. Diatoms have highly patterned silica-based cell wall structures that are unique models for the study and application of directed nanomaterials synthesis by biological systems. Our study provides new insights into the architecture and assembly principles of both the "hard" (siliceous) and "soft" (organic) components of the cell. From 3D reconstructions of developmentally synchronized diatoms captured at different stages, we show that both micro- and nanoscale siliceous structures can be visualized at specific stages in their formation. We show that not only are structures visualized in a whole-cell context, but demonstrate that fragile, early-stage structures are visible, and that this can be combined with elemental mapping in the exposed slice. We demonstrate that the 3D architectures of silica structures, and the cellular components that mediate their creation and positioning can be visualized simultaneously, providing new opportunities to study and manipulate mineral nanostructures in a genetically tractable system.
离子研磨扫描电子显微镜(IASEM)利用聚焦离子束从块状标本表面研磨薄片,再结合扫描电子显微镜对每个切片的表面进行成像,从而能够以约30纳米的分辨率对亚细胞结构进行三维重建。在此,我们报告了IASEM首次用于对生物矿化生物体——海洋硅藻拟菱形藻进行成像。硅藻具有高度规整的基于二氧化硅的细胞壁结构,是研究生物系统定向合成纳米材料以及将其应用的独特模型。我们的研究为细胞中的“硬”(硅质)和“软”(有机)成分的结构和组装原理提供了新的见解。通过对处于不同发育阶段的同步发育硅藻进行三维重建,我们发现微米级和纳米级的硅质结构在其形成的特定阶段都可以可视化。我们不仅展示了在整个细胞环境中可视化的结构,还证明了脆弱的早期结构是可见的,并且这可以与暴露切片中的元素映射相结合。我们证明,二氧化硅结构的三维架构以及介导其形成和定位的细胞成分可以同时可视化,为在遗传易处理系统中研究和操纵矿物纳米结构提供了新机会。