Suppr超能文献

离体软骨和肌腱中T2弛豫的多组分

Multi-components of T2 relaxation in ex vivo cartilage and tendon.

作者信息

Zheng Shaokuan, Xia Yang

机构信息

Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA.

出版信息

J Magn Reson. 2009 Jun;198(2):188-96. doi: 10.1016/j.jmr.2009.02.005. Epub 2009 Feb 21.

Abstract

The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (microMRI) at 13 and 26 microm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the microMRI signal. When the imaging voxel size was 6.76 x 10(-4)mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81-20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.

摘要

通过微观磁共振成像(microMRI)在13微米和26微米横向分辨率下研究了软骨和肌腱中T2弛豫的多组分。使用两种成像方案对标本中的T2弛豫进行定量,即五点采样和六十点采样。多指数拟合方法和非负最小二乘法(NNLS)均用于分析微观磁共振成像信号。当成像体素大小为6.76×10⁻⁴mm³且在微观成像实验的实际信噪比(SNR)范围内时,我们发现:(1)犬肌腱具有多个T2组分;(2)牛鼻软骨具有单个T2组分;(3)犬关节软骨具有单个T2组分。发现五点法和六十点法得到的关节软骨T2图谱是一致的。此外,发现通过胰蛋白酶消化法去除软骨中的糖胺聚糖成分会导致关节软骨中T2弛豫增加9.81% - 20.52%,这取决于组织标本在磁场中的取向角度。

相似文献

1
Multi-components of T2 relaxation in ex vivo cartilage and tendon.
J Magn Reson. 2009 Jun;198(2):188-96. doi: 10.1016/j.jmr.2009.02.005. Epub 2009 Feb 21.
2
Dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage.
J Magn Reson. 2011 Sep;212(1):124-32. doi: 10.1016/j.jmr.2011.06.031. Epub 2011 Jul 7.
3
On the measurement of multi-component T2 relaxation in cartilage by MR spectroscopy and imaging.
Magn Reson Imaging. 2010 May;28(4):537-45. doi: 10.1016/j.mri.2009.12.006. Epub 2010 Jan 12.
4
Experimental issues in the measurement of multi-component relaxation times in articular cartilage by microscopic MRI.
J Magn Reson. 2013 Oct;235:15-25. doi: 10.1016/j.jmr.2013.07.001. Epub 2013 Jul 15.
7
Stabilization of T relaxation and magnetization transfer in cartilage explants by immersion in perfluorocarbon liquid.
Magn Reson Med. 2019 May;81(5):3209-3217. doi: 10.1002/mrm.27650. Epub 2019 Jan 22.
8
Multicomponent analysis of T relaxation in bovine articular cartilage at low magnetic fields.
Magn Reson Med. 2019 May;81(5):2858-2868. doi: 10.1002/mrm.27624. Epub 2018 Dec 10.
9
Biexponential T relaxation estimation of human knee cartilage in vivo at 3T.
J Magn Reson Imaging. 2018 Mar;47(3):809-819. doi: 10.1002/jmri.25778. Epub 2017 May 31.

引用本文的文献

1
Assessment of articular cartilage degradation in response to an impact injury using µMRI.
Connect Tissue Res. 2024 Mar;65(2):146-160. doi: 10.1080/03008207.2024.2319050. Epub 2024 Feb 28.
3
Magic angle effect on diffusion tensor imaging in ligament and brain.
Magn Reson Imaging. 2022 Oct;92:243-250. doi: 10.1016/j.mri.2022.06.008. Epub 2022 Jun 28.
4
Topographical and zonal patterns of T2 relaxation in osteoarthritic tibial cartilage by low- and high-resolution MRI.
Magn Reson Imaging. 2021 May;78:98-108. doi: 10.1016/j.mri.2021.01.002. Epub 2021 Jan 23.
5
MR fingerprinting for rapid simultaneous T , T , and T relaxation mapping of the human articular cartilage at 3T.
Magn Reson Med. 2020 Nov;84(5):2636-2644. doi: 10.1002/mrm.28308. Epub 2020 May 9.
6
Quantitative µMRI and PLM study of rabbit humeral and femoral head cartilage at sub-10 µm resolutions.
J Orthop Res. 2020 May;38(5):1052-1062. doi: 10.1002/jor.24547. Epub 2019 Dec 12.
8
Morphological and biomechanical characterization of immature and mature nasoseptal cartilage.
Sci Rep. 2019 Aug 28;9(1):12464. doi: 10.1038/s41598-019-48578-3.

本文引用的文献

1
Quantitative T2 measurement of a single voxel with arbitrary shape using pinwheel excitation and CPMG acquisition.
MAGMA. 2007 Dec;20(5-6):233-40. doi: 10.1007/s10334-007-0088-9. Epub 2007 Nov 13.
2
The depth-dependent anisotropy of articular cartilage by Fourier-transform infrared imaging (FTIRI).
Osteoarthritis Cartilage. 2007 Jul;15(7):780-8. doi: 10.1016/j.joca.2007.01.007. Epub 2007 Feb 20.
3
Multinuclear NMR and MRI studies of the maturation of pig articular cartilage.
Magn Reson Med. 2006 Mar;55(3):532-40. doi: 10.1002/mrm.20775.
4
Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T.
Magn Reson Imaging. 2006 Jan;24(1):33-43. doi: 10.1016/j.mri.2005.10.016. Epub 2005 Dec 19.
5
Transverse relaxation mechanisms in articular cartilage.
J Magn Reson. 2004 Aug;169(2):300-7. doi: 10.1016/j.jmr.2004.05.003.
7
Analysis of multi-exponential relaxation data with very short components using linear regularization.
J Magn Reson. 2004 Mar;167(1):36-41. doi: 10.1016/j.jmr.2003.11.004.
8
Dynamic and functional imaging of the musculoskeletal system.
Semin Musculoskelet Radiol. 2003 Dec;7(4):245-8. doi: 10.1055/s-2004-815674.
10
Three-pool model of white matter.
J Magn Reson Imaging. 2003 Jan;17(1):1-10. doi: 10.1002/jmri.10230.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验