Suppr超能文献

利用二维高效液相色谱-串联质谱对粟酒裂殖酵母进行全面蛋白质组分析。

Comprehensive proteomic analysis of Schizosaccharomyces pombe by two-dimensional HPLC-tandem mass spectrometry.

作者信息

Brill Laurence M, Motamedchaboki Khatereh, Wu Shuangding, Wolf Dieter A

机构信息

NCI Cancer Center Proteomics Facility, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Methods. 2009 Jul;48(3):311-9. doi: 10.1016/j.ymeth.2009.02.023. Epub 2009 Mar 9.

Abstract

We describe a detailed and widely applicable method for comprehensive proteomic profiling of the fission yeast Schizosaccharomyces pombe by 2-dimensional high performance liquid chromatography-electrospray ionization-tandem mass spectrometry that demonstrates high sensitivity and robust operation. Steps ranging from the preparation of total proteins, digestion of proteins to peptides, and separation of peptides by two-dimensional (1. strong cation exchange and 2. reversed-phase) high performance liquid chromatography followed by tandem mass spectrometry and data processing have been optimized for our instrumentation platform. Using this technology, we identify ca. 3400 proteins per sample and have identified an estimated 4600 proteins in vegetative cells (equal to ca. 90% of the predicted S. pombe proteome) at a false discovery rate of 0.02. Considering the fact that approximately 500 genes are strongly induced during sexual differentiation, and sexual differentiation was not included in our experiments, the proteomic profiling technique affords what should be virtually complete coverage of the vegetative S. pombe proteome. In addition, these methods are widely applicable, having been used for proteomic profiling of several other organisms.

摘要

我们描述了一种详细且广泛适用的方法,用于通过二维高效液相色谱 - 电喷雾电离 - 串联质谱对裂殖酵母粟酒裂殖酵母进行全面蛋白质组分析,该方法具有高灵敏度和稳健的操作性。从总蛋白制备、蛋白质消化成肽段,到通过二维(1. 强阳离子交换和2. 反相)高效液相色谱分离肽段,随后进行串联质谱分析和数据处理等步骤,均已针对我们的仪器平台进行了优化。使用该技术,我们每个样品可鉴定约3400种蛋白质,并且在错误发现率为0.02的情况下,已在营养细胞中鉴定出约4600种蛋白质(约占预测的粟酒裂殖酵母蛋白质组的90%)。考虑到在有性分化过程中约有500个基因被强烈诱导,且我们的实验未包括有性分化,该蛋白质组分析技术几乎能完全覆盖营养型粟酒裂殖酵母的蛋白质组。此外,这些方法具有广泛的适用性,已用于其他几种生物的蛋白质组分析。

相似文献

1
Comprehensive proteomic analysis of Schizosaccharomyces pombe by two-dimensional HPLC-tandem mass spectrometry.
Methods. 2009 Jul;48(3):311-9. doi: 10.1016/j.ymeth.2009.02.023. Epub 2009 Mar 9.
5
Extensive mass spectrometry-based analysis of the fission yeast proteome: the Schizosaccharomyces pombe PeptideAtlas.
Mol Cell Proteomics. 2013 Jun;12(6):1741-51. doi: 10.1074/mcp.M112.023754. Epub 2013 Mar 5.
6
Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe.
Mol Syst Biol. 2007;3:79. doi: 10.1038/msb4100117. Epub 2007 Feb 13.

引用本文的文献

1
Vimentin intermediate filaments provide structural stability to the mammalian Golgi complex.
J Cell Sci. 2023 Oct 15;136(20). doi: 10.1242/jcs.260577. Epub 2023 Oct 18.
2
Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells.
Neuron. 2022 Feb 2;110(3):452-469.e14. doi: 10.1016/j.neuron.2021.10.036. Epub 2021 Nov 18.
4
SHARPIN-mediated regulation of protein arginine methyltransferase 5 controls melanoma growth.
J Clin Invest. 2018 Jan 2;128(1):517-530. doi: 10.1172/JCI95410. Epub 2017 Dec 11.
5
A novel SHARPIN-PRMT5-H3R2me1 axis is essential for lung cancer cell invasion.
Oncotarget. 2017 Jul 4;8(33):54809-54820. doi: 10.18632/oncotarget.18957. eCollection 2017 Aug 15.
6
The Protein Encoded by the CCDC170 Breast Cancer Gene Functions to Organize the Golgi-Microtubule Network.
EBioMedicine. 2017 Aug;22:28-43. doi: 10.1016/j.ebiom.2017.06.024. Epub 2017 Jun 27.
7
Protein Corona Influences Cell-Biomaterial Interactions in Nanostructured Tissue Engineering Scaffolds.
Adv Funct Mater. 2015 Jul 22;25(28):4379-4389. doi: 10.1002/adfm.201500875. Epub 2015 Jun 5.
8
A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism.
Cell Rep. 2016 Aug 16;16(7):1891-902. doi: 10.1016/j.celrep.2016.07.006. Epub 2016 Jul 28.
10
An improved smaller biotin ligase for BioID proximity labeling.
Mol Biol Cell. 2016 Apr 15;27(8):1188-96. doi: 10.1091/mbc.E15-12-0844. Epub 2016 Feb 24.

本文引用的文献

1
Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
Nature. 2008 Oct 30;455(7217):1251-4. doi: 10.1038/nature07341. Epub 2008 Sep 28.
2
Significance analysis of spectral count data in label-free shotgun proteomics.
Mol Cell Proteomics. 2008 Dec;7(12):2373-85. doi: 10.1074/mcp.M800203-MCP200. Epub 2008 Jul 20.
3
Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution.
Nature. 2008 Jun 26;453(7199):1239-43. doi: 10.1038/nature07002. Epub 2008 May 18.
4
The biological impact of mass-spectrometry-based proteomics.
Nature. 2007 Dec 13;450(7172):991-1000. doi: 10.1038/nature06525.
6
Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe.
Mol Syst Biol. 2007;3:79. doi: 10.1038/msb4100117. Epub 2007 Feb 13.
7
Reproducible isolation of distinct, overlapping segments of the phosphoproteome.
Nat Methods. 2007 Mar;4(3):231-7. doi: 10.1038/nmeth1005. Epub 2007 Feb 11.
8
Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.
Mol Cell Proteomics. 2005 Mar;4(3):310-27. doi: 10.1074/mcp.M400219-MCP200. Epub 2005 Jan 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验