Suppr超能文献

环磷酸腺苷对Epac1的直接空间控制

Direct spatial control of Epac1 by cyclic AMP.

作者信息

Ponsioen Bas, Gloerich Martijn, Ritsma Laila, Rehmann Holger, Bos Johannes L, Jalink Kees

机构信息

Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.

出版信息

Mol Cell Biol. 2009 May;29(10):2521-31. doi: 10.1128/MCB.01630-08. Epub 2009 Mar 9.

Abstract

Epac1 is a guanine nucleotide exchange factor (GEF) for the small G protein Rap and is directly activated by cyclic AMP (cAMP). Upon cAMP binding, Epac1 undergoes a conformational change that allows the interaction of its GEF domain with Rap, resulting in Rap activation and subsequent downstream effects, including integrin-mediated cell adhesion and cell-cell junction formation. Here, we report that cAMP also induces the translocation of Epac1 toward the plasma membrane. Combining high-resolution confocal fluorescence microscopy with total internal reflection fluorescence and fluorescent resonance energy transfer assays, we observed that Epac1 translocation is a rapid and reversible process. This dynamic redistribution of Epac1 requires both the cAMP-induced conformational change as well as the DEP domain. In line with its translocation, Epac1 activation induces Rap activation predominantly at the plasma membrane. We further show that the translocation of Epac1 enhances its ability to induce Rap-mediated cell adhesion. Thus, the regulation of Epac1-Rap signaling by cAMP includes both the release of Epac1 from autoinhibition and its recruitment to the plasma membrane.

摘要

Epac1是小G蛋白Rap的鸟嘌呤核苷酸交换因子(GEF),可被环磷酸腺苷(cAMP)直接激活。cAMP结合后,Epac1会发生构象变化,使其GEF结构域与Rap相互作用,导致Rap激活及随后的下游效应,包括整合素介导的细胞黏附和细胞间连接形成。在此,我们报道cAMP还可诱导Epac1向质膜转位。结合高分辨率共聚焦荧光显微镜、全内反射荧光和荧光共振能量转移分析,我们观察到Epac1转位是一个快速且可逆的过程。Epac1的这种动态重新分布既需要cAMP诱导的构象变化,也需要DEP结构域。与其转位一致,Epac1激活主要在质膜处诱导Rap激活。我们进一步表明,Epac1的转位增强了其诱导Rap介导的细胞黏附的能力。因此,cAMP对Epac1-Rap信号的调节既包括Epac1从自身抑制中释放,也包括其向质膜的募集。

相似文献

1
Direct spatial control of Epac1 by cyclic AMP.
Mol Cell Biol. 2009 May;29(10):2521-31. doi: 10.1128/MCB.01630-08. Epub 2009 Mar 9.
2
Spatial regulation of cyclic AMP-Epac1 signaling in cell adhesion by ERM proteins.
Mol Cell Biol. 2010 Nov;30(22):5421-31. doi: 10.1128/MCB.00463-10. Epub 2010 Sep 20.
3
cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3814-9. doi: 10.1073/pnas.1117599109. Epub 2012 Feb 16.
4
Dynamic interaction of cAMP with the Rap guanine-nucleotide exchange factor Epac1.
J Mol Biol. 2001 Mar 9;306(5):1167-77. doi: 10.1006/jmbi.2001.4444.
5
Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor.
J Cell Biol. 2003 Feb 17;160(4):487-93. doi: 10.1083/jcb.200209105. Epub 2003 Feb 10.
6
The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea.
J Biol Chem. 2013 Jul 12;288(28):20404-15. doi: 10.1074/jbc.M113.467860. Epub 2013 May 17.
7
The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity.
J Cell Biol. 2011 Jun 13;193(6):1009-20. doi: 10.1083/jcb.201011126.
9
Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs.
J Biol Chem. 2000 Jul 7;275(27):20829-36. doi: 10.1074/jbc.M001113200.

引用本文的文献

2
A SUMO-interacting motif in the guanine nucleotide exchange factor EPAC1 is required for subcellular targeting and function.
J Biol Chem. 2025 Jun;301(6):110279. doi: 10.1016/j.jbc.2025.110279. Epub 2025 May 22.
3
Cytosolic-enhanced dark Epac-based FRET sensors allow for intracellular cAMP detection in live cells via FLIM.
FEBS Lett. 2025 Apr;599(7):1075-1085. doi: 10.1002/1873-3468.15093. Epub 2024 Dec 31.
4
Role of EPAC1 in chronic pain.
Biochem Biophys Rep. 2024 Jan 22;37:101645. doi: 10.1016/j.bbrep.2024.101645. eCollection 2024 Mar.
5
Membranes prime the RapGEF EPAC1 to transduce cAMP signaling.
Nat Commun. 2023 Jul 12;14(1):4157. doi: 10.1038/s41467-023-39894-4.
6
cAMP-Dependent Signaling and Ovarian Cancer.
Cells. 2022 Nov 29;11(23):3835. doi: 10.3390/cells11233835.
7
Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo.
Nat Methods. 2022 Nov;19(11):1461-1471. doi: 10.1038/s41592-022-01646-5. Epub 2022 Oct 27.
8
Unraveling the role of Epac1-SOCS3 signaling in the development of neonatal-CRD-induced visceral hypersensitivity in rats.
CNS Neurosci Ther. 2022 Sep;28(9):1393-1408. doi: 10.1111/cns.13880. Epub 2022 Jun 15.
10
Overexpression of RAPGEF3 enhances the therapeutic effect of dezocine in treatment of neuropathic pain.
Genet Mol Biol. 2021 Nov 19;44(4):e20200463. doi: 10.1590/1678-4685-GMB-2020-0463. eCollection 2021.

本文引用的文献

1
Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2.
Mol Cell Biol. 2008 Dec;28(23):7109-25. doi: 10.1128/MCB.01060-08. Epub 2008 Sep 29.
2
EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12791-6. doi: 10.1073/pnas.0805167105. Epub 2008 Aug 26.
3
Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B.
Nature. 2008 Sep 4;455(7209):124-7. doi: 10.1038/nature07187. Epub 2008 Jul 27.
4
8-pCPT-2'-O-Me-cAMP-AM: an improved Epac-selective cAMP analogue.
Chembiochem. 2008 Sep 1;9(13):2052-4. doi: 10.1002/cbic.200800216.
5
cAMP-dependent signaling as a core component of the mammalian circadian pacemaker.
Science. 2008 May 16;320(5878):949-53. doi: 10.1126/science.1152506.
7
Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis.
J Biol Chem. 2008 Feb 22;283(8):4464-8. doi: 10.1074/jbc.C700171200. Epub 2007 Dec 6.
9
GEFs and GAPs: critical elements in the control of small G proteins.
Cell. 2007 Jun 1;129(5):865-77. doi: 10.1016/j.cell.2007.05.018.
10
Rap1: a key regulator in cell-cell junction formation.
J Cell Sci. 2007 Jan 1;120(Pt 1):17-22. doi: 10.1242/jcs.03306.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验