Division of Molecular Pathophysiology, National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India.
J Biol Chem. 2013 Jul 12;288(28):20404-15. doi: 10.1074/jbc.M113.467860. Epub 2013 May 17.
The apical membrane of intestinal epithelia expresses intermediate conductance K(+) channel (KCNN4), which provides the driving force for Cl(-) secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl(-) secretion via stimulation of Rap2-phospholipase Cε-[Ca(2+)]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl(-) secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl(-) secretion and apical K(+) conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2'-O- methyladenosine 3',5'-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K(+) channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.
肠上皮的顶端膜表达中等电导钾通道 (KCNN4),为 Cl(-)分泌提供驱动力。然而,其在腹泻中的作用以及 Epac1 的调节作用尚不清楚。此前,我们已经建立了 Epac1 结合 cAMP 后通过刺激 Rap2-磷脂酶 Cε-[Ca(2+)]i 信号转导,激活一种 PKA 非依赖性的 Cl(-)分泌机制。在这里,我们报告 Epac1 通过其下游 Rap1A-RhoA-Rho 相关激酶 (ROCK) 信号通路调节 KCNN4c 通道的表面表达,从而持续进行 Cl(-)分泌。Epac1 蛋白耗竭和顶端添加特定的 KCNN4 抑制剂 TRAM-34,可显著抑制 T84WT 细胞中 cAMP 刺激的 Cl(-)分泌和顶端 K(+)电导 (IK(ap))。用 Epac1 激动剂 8-(4-氯苯硫基)-2'-O-甲基腺苷 3',5'-环单磷酸处理的基底外侧通透单层的电流-电压关系显示,T84WT 细胞中存在内向整流和 TRAM-34 敏感的 K(+)通道,而 Epac1KDT84 细胞中则不存在。Epac1KDT84 细胞中的重构共聚焦图像显示 KCNN4c 蛋白重新分布到亚顶端细胞内隔室,生物素化测定显示与 T84WT 细胞相比,KCNN4c 蛋白的表面表达降低了约 83%。进一步的研究表明,Epac1 激动剂激活 Rap1 以促进 IK(ap)。RhoA 抑制剂 (GGTI298) 和 ROCK 抑制剂 (H1152) 均显著降低 cAMP 激动剂刺激的 IK(ap),而后者还降低了 T84WT 细胞中 KCNN4c 与顶端膜标记物麦胚凝集素的共定位。体内小鼠回肠环实验显示,当霍乱毒素与 TRAM-34、GGTI298 或 H1152 一起注入环中时,TRAM-34、GGTI298 或 H1152 可减少液体积累。我们的结论是,Epac1 依赖 Rap1A 的信号转导涉及 RhoA-ROCK,是通过调节顶端 KCNN4c 通道调节肠道液体转运的重要调节剂,这一发现可能对腹泻疾病具有治疗价值。