Skerman Helen M, Yates Patsy M, Battistutta Diana
Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
Res Nurs Health. 2009 Jun;32(3):345-60. doi: 10.1002/nur.20323.
Multivariate methods are required to assess the interrelationships among multiple, concurrent symptoms. We examined the conceptual and contextual appropriateness of commonly used multivariate methods for cancer symptom cluster identification. From 178 publications identified in an online database search of Medline, CINAHL, and PsycINFO, limited to articles published in English, 10 years prior to March 2007, 13 cross-sectional studies met the inclusion criteria. Conceptually, common factor analysis (FA) and hierarchical cluster analysis (HCA) are appropriate for symptom cluster identification, not principal component analysis. As a basis for new directions in symptom management, FA methods are more appropriate than HCA. Principal axis factoring or maximum likelihood factoring, the scree plot, oblique rotation, and clinical interpretation are recommended approaches to symptom cluster identification.
需要采用多变量方法来评估多种并发症状之间的相互关系。我们检验了常用多变量方法在识别癌症症状群方面的概念和情境适用性。在对Medline、CINAHL和PsycINFO在线数据库进行搜索时,我们限定搜索2007年3月前10年内发表的英文文章,从178篇已识别的出版物中,有13项横断面研究符合纳入标准。从概念上讲,共同因子分析(FA)和层次聚类分析(HCA)适用于症状群识别,主成分分析则不适用。作为症状管理新方向的基础,FA方法比HCA更合适。主轴因子法或极大似然因子法、碎石图、斜交旋转和临床解释是推荐的症状群识别方法。