Suppr超能文献

用于自动筛查致弱视因素的人工智能技术

Artificial intelligence techniques for automatic screening of amblyogenic factors.

作者信息

Van Eenwyk Jonathan, Agah Arvin, Giangiacomo Joseph, Cibis Gerhard

机构信息

School of Engineering, University of Kansas, Lawrence, Kansas, USA.

出版信息

Trans Am Ophthalmol Soc. 2008;106:64-73; discussion 73-4.

Abstract

PURPOSE

To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors.

METHODS

In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method.

RESULTS

The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the "gold standard" specialist examination with a "refer/do not refer" decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than -7.

CONCLUSIONS

Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years.

摘要

目的

开发一种低成本的自动化视频系统,以有效筛查6个月至6岁儿童的致弱视因素。

方法

1994年,作者之一(G.C.)描述了视频视觉发育评估,这是一种基于数字化模拟视频的系统,结合了布吕克纳瞳孔红光反射成像和偏心 photorefraction,用于筛查幼儿的致弱视因素。该系统通过人工分析图像。我们实现了数字视频帧和瞳孔图像的自动捕获,并应用计算机视觉和人工智能来分析和解释结果。人工智能系统通过十倍交叉验证法进行评估。

结果

最佳系统是决策树学习方法,与采用“转诊/不转诊”决策的“金标准”专家检查相比,其准确率为77%。转诊标准包括斜视,包括微小斜视,以及被认为有致弱视作用的屈光不正和屈光参差。82%的斜视个体被正确识别。高屈光不正也能被正确识别,并在90%的情况下被转诊,以及显著的屈光参差。该程序在识别+5以下和-7以下的中度屈光不正时准确率较低。

结论

尽管我们正在探索多种途径来提高自动分析的准确性,但该程序目前的形式在检测6个月至6岁儿童的致弱视因素方面具有可接受的成本效益。

相似文献

1
Artificial intelligence techniques for automatic screening of amblyogenic factors.
Trans Am Ophthalmol Soc. 2008;106:64-73; discussion 73-4.
3
Efficiency of a video-autorefractometer used as a screening device for amblyogenic factors.
Graefes Arch Clin Exp Ophthalmol. 2002 Sep;240(9):710-6. doi: 10.1007/s00417-002-0524-5. Epub 2002 Aug 27.
4
Detection of Amblyogenic Refractive Error Using the Spot Vision Screener in Children.
Optom Vis Sci. 2020 May;97(5):324-331. doi: 10.1097/OPX.0000000000001505.
6
Sensitivity of the MTI photoscreener for amblyogenic factors in infancy and early childhood.
Graefes Arch Clin Exp Ophthalmol. 1998 Nov;236(11):801-5. doi: 10.1007/s004170050163.
7
The Use of a Mobile Van for School Vision Screening: Results of 63 841 Evaluations.
Am J Ophthalmol. 2016 Mar;163:108-114.e1. doi: 10.1016/j.ajo.2015.11.026. Epub 2015 Nov 24.
8
Polaroid photoscreening for amblyogenic factors. An improved methodology.
Ophthalmology. 1992 Dec;99(12):1785-95. doi: 10.1016/s0161-6420(92)31722-1.
9
[Detection of amlyogenic risk factors with the vision screener S 04].
Klin Monbl Augenheilkd. 2010 Oct;227(10):798-803. doi: 10.1055/s-0029-1245784. Epub 2010 Oct 20.
10
Critical Assessment of an Ocular Photoscreener.
J Pediatr Ophthalmol Strabismus. 2018 May 1;55(3):194-199. doi: 10.3928/01913913-20170703-18. Epub 2017 Dec 19.

引用本文的文献

1
A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements.
Ophthalmol Sci. 2025 Mar 27;5(5):100775. doi: 10.1016/j.xops.2025.100775. eCollection 2025 Sep-Oct.
2
Artificial Intelligence Applications in Ophthalmology.
JMA J. 2025 Jan 15;8(1):66-75. doi: 10.31662/jmaj.2024-0139. Epub 2024 Sep 13.
3
Artificial intelligence-based screening for amblyopia and its risk factors: comparison with four classic stereovision tests.
Front Med (Lausanne). 2023 Dec 22;10:1294559. doi: 10.3389/fmed.2023.1294559. eCollection 2023.
4
Tests for detecting strabismus in children aged 1 to 6 years in the community.
Cochrane Database Syst Rev. 2017 Nov 6;11(11):CD011221. doi: 10.1002/14651858.CD011221.pub2.
5
A pilot study evaluating the use of EyeSpy video game software to perform vision screening in school-aged children.
J AAPOS. 2010 Aug;14(4):311-6. doi: 10.1016/j.jaapos.2010.03.008. Epub 2010 Jul 16.

本文引用的文献

3
Evaluation of the iScreen digital screening system for amblyogenic factors.
Can J Ophthalmol. 2000 Aug;35(5):258-62. doi: 10.1016/s0008-4182(00)80075-7.
4
Photoscreening for amblyogenic factors.
J Pediatr Ophthalmol Strabismus. 1995 Sep-Oct;32(5):289-95. doi: 10.3928/0191-3913-19950901-06.
6
Brückner test.
Ophthalmology. 1981 Oct;88(10):1041-4. doi: 10.1016/s0161-6420(81)80034-6.
7
Rapid strabismus screening for the pediatrician.
Clin Pediatr (Phila). 1986 Jun;25(6):304-7. doi: 10.1177/000992288602500604.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验