Upadhyaya Dipak P, Cakir Gokce, Ramat Stefano, Albert Jeffrey, Shaikh Aasef, Sahoo Satya S, Ghasia Fatema
Department of Computer and Systems Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio.
Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio.
Ophthalmol Sci. 2025 Mar 27;5(5):100775. doi: 10.1016/j.xops.2025.100775. eCollection 2025 Sep-Oct.
To develop an attention-based deep learning (DL) model based on eye movements acquired during a simple visual fixation task to detect amblyopic subjects across different types and severity from controls.
An observational study.
We recruited 40 controls and 95 amblyopic subjects (anisometropic = 32; strabismic = 29; and mixed = 34) at the Cleveland Clinic from 2020 to 2024.
Binocular horizontal and vertical eye positions were recorded using infrared video-oculography during binocular and monocular viewing. Amblyopic subjects were classified as those without nystagmus (n = 42) and those with nystagmus with fusion maldevelopment nystagmus (FMN) or nystagmus that did not meet the criteria of FMN or infantile nystagmus syndrome (n = 53). A multihead attention-based transformer encoder model was trained and cross-validated on deblinked and denoised eye position data acquired during fixation.
Detection of amblyopia across types (anisometropia, strabismus, or mixed) and severity (treated, mild, moderate, or severe) and subjects with and without nystagmus was evaluated with area under the receiver-operator characteristic curves, area under the precision-recall curve (AUPRC), and accuracy.
Area under the receiver-operator characteristic curves for classification of subjects per type were 0.70 ± 0.16 for anisometropia (AUPRC: 0.72 ± 0.08), 0.78 ± 0.15 for strabismus (AUPRC: 0.81 ± 0.16), and 0.80 ± 0.13 for mixed (AUPRC: 0.82 ± 0.15). Area under the receiver-operator characteristic curves for classification of amblyopia subjects per severity were 0.77 ± 0.12 for treated/mild (AUPRC: 0.76 ± 0.18), and 0.78 ± 0.09 for moderate/severe (AUPRC: 0.79 ± 0.16). Th area under the receiver-operator characteristic curve for classification of subjects with nystagmus was 0.83 ± 0.11 (AUPRC: 0.81 ± 0.18), and the area under the receiver-operator characteristic curve for those without nystagmus was 0.75 ± 0.15 (AUPRC: 0.76 ± 0.09).
The multihead transformer DL model classified amblyopia subjects regardless of the type, severity, and presence of nystagmus. The model's ability to identify amblyopia using eye movements alone demonstrates the feasibility of using eye-tracking data in clinical settings to perform objective classifications and complement traditional amblyopia evaluations.
Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
基于在简单视觉注视任务中获取的眼动数据,开发一种基于注意力机制的深度学习(DL)模型,以区分不同类型和严重程度的弱视受试者与对照者。
一项观察性研究。
2020年至2024年期间,我们在克利夫兰诊所招募了40名对照者和95名弱视受试者(屈光参差性弱视=32例;斜视性弱视=29例;混合性弱视=34例)。
在双眼和单眼观察期间,使用红外视频眼动仪记录双眼水平和垂直眼位。弱视受试者分为无眼球震颤者(n=42)和伴有融合发育不良性眼球震颤(FMN)或不符合FMN或婴儿型眼球震颤综合征标准的眼球震颤者(n=53)。在去眨眼和去噪后的注视期间获取的眼位数据上,训练并交叉验证基于多头注意力机制的Transformer编码器模型。
使用受试者工作特征曲线下面积、精确召回率曲线下面积(AUPRC)和准确率,评估不同类型(屈光参差性、斜视性或混合性)和严重程度(已治疗、轻度、中度或重度)的弱视以及有无眼球震颤的受试者的弱视检测情况。
按类型对受试者进行分类的受试者工作特征曲线下面积,屈光参差性弱视为0.70±0.16(AUPRC:0.72±0.08),斜视性弱视为0.78±0.15(AUPRC:0.81±0.16),混合性弱视为0.80±0.13(AUPRC:0.82±0.15)。按严重程度对弱视受试者进行分类的受试者工作特征曲线下面积,已治疗/轻度为0.77±0.12(AUPRC:0.76±0.18),中度/重度为0.78±0.09(AUPRC:0.79±0.16)。有眼球震颤受试者分类的受试者工作特征曲线下面积为0.83±0.11(AUPRC:0.81±0.18),无眼球震颤受试者分类的受试者工作特征曲线下面积为0.75±0.15(AUPRC:0.76±0.09)。
多头Transformer DL模型能够对弱视受试者进行分类,而不受类型、严重程度和眼球震颤的影响。该模型仅通过眼动识别弱视的能力证明了在临床环境中使用眼动追踪数据进行客观分类并补充传统弱视评估的可行性。
本文末尾的脚注和披露中可能会有专有或商业披露信息。