使用发作期脑电图记录的主成分分析-低分辨率电磁断层成像(PCA-LORETA)分析对颞叶癫痫进行源定位

Source localization of temporal lobe epilepsy using PCA-LORETA analysis on ictal EEG recordings.

作者信息

Stern Yaki, Neufeld Miriam Y, Kipervasser Svetlana, Zilberstein Amir, Fried Itzhak, Teicher Mina, Adi-Japha Esther

机构信息

The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.

出版信息

J Clin Neurophysiol. 2009 Apr;26(2):109-16. doi: 10.1097/WNP.0b013e31819b3bf2.

Abstract

Localizing the source of an epileptic seizure using noninvasive EEG suffers from inaccuracies produced by other generators not related to the epileptic source. The authors isolated the ictal epileptic activity, and applied a source localization algorithm to identify its estimated location. Ten ictal EEG scalp recordings from five different patients were analyzed. The patients were known to have temporal lobe epilepsy with a single epileptic focus that had a concordant MRI lesion. The patients had become seizure-free following partial temporal lobectomy. A midinterval (approximately 5 seconds) period of ictal activity was used for Principal Component Analysis starting at ictal onset. The level of epileptic activity at each electrode (i.e., the eigenvector of the component that manifest epileptic characteristic), was used as an input for low-resolution tomography analysis for EEG inverse solution (Zilberstain et al., 2004). The algorithm accurately and robustly identified the epileptic focus in these patients. Principal component analysis and source localization methods can be used in the future to monitor the progression of an epileptic seizure and its expansion to other areas.

摘要

使用非侵入性脑电图(EEG)定位癫痫发作源存在与癫痫源无关的其他发生器产生的不准确问题。作者分离出发作期癫痫活动,并应用源定位算法来确定其估计位置。分析了来自五名不同患者的十次发作期EEG头皮记录。已知这些患者患有颞叶癫痫,有单一癫痫病灶且与MRI病变一致。这些患者在部分颞叶切除术后已无癫痫发作。从发作开始起,取发作期活动的中间间隔(约5秒)时间段进行主成分分析。每个电极处的癫痫活动水平(即表现出癫痫特征的成分的特征向量)用作EEG逆解的低分辨率断层扫描分析的输入(Zilberstain等人,2004年)。该算法准确且稳健地识别出这些患者的癫痫病灶。主成分分析和源定位方法未来可用于监测癫痫发作的进展及其向其他区域的扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索