Guendelman Miriam, Vekslar Rotem, Shriki Oren
Departments of Cognitive and Brain Sciences
Departments of Cognitive and Brain Sciences.
eNeuro. 2025 Jan 16;12(1). doi: 10.1523/ENEURO.0157-24.2024. Print 2025 Jan.
Epilepsy, a neurological disorder characterized by recurrent unprovoked seizures, significantly impacts patient quality of life. Current classification methods focus primarily on clinical observations and electroencephalography (EEG) analysis, often overlooking the underlying dynamics driving seizures. This study uses surface EEG data to identify seizure transitions using a dynamical systems-based framework-the taxonomy of seizure dynamotypes-previously examined only in invasive data. We applied principal component and independent component (IC) analysis to surface EEG recordings from 1,177 seizures in 158 patients with focal epilepsy, decomposing the signals into ICs. The ICs were visually labeled for clear seizure transitions and bifurcation morphologies (BifMs), which were then examined using Bayesian multilevel modeling in the context of clinical factors. Our analysis reveals that certain onset bifurcations (saddle node on invariant circle and supercritical Hopf) are more prevalent during wakefulness compared with their reduced rate during nonrapid eye movement (NREM) sleep, particularly NREM3. We discuss the possible implications of our results in the context of modeling approaches and suggest additional avenues to continue this exploration. Furthermore, we demonstrate the feasibility of automating this classification process using machine learning, achieving high performance in identifying seizure-related ICs and classifying interspike interval changes. Our findings suggest that the noise in surface EEG may obscure certain BifMs, and we suggest technical improvements that could enhance detection accuracy. Expanding the dataset and incorporating long-term biological rhythms, such as circadian and multiday cycles, may provide a more comprehensive understanding of seizure dynamics and improve clinical decision-making.
癫痫是一种以反复出现无诱因癫痫发作为特征的神经系统疾病,严重影响患者的生活质量。目前的分类方法主要集中在临床观察和脑电图(EEG)分析上,常常忽略了引发癫痫发作的潜在动力学机制。本研究使用头皮脑电图数据,通过一个基于动力系统的框架——癫痫发作动态类型分类法,来识别癫痫发作的转变,该分类法此前仅在侵入性数据中进行过研究。我们将主成分分析和独立成分分析应用于158例局灶性癫痫患者的1177次癫痫发作的头皮脑电图记录,将信号分解为独立成分。对这些独立成分进行视觉标记,以明确癫痫发作的转变和分叉形态(BifMs),然后在临床因素的背景下使用贝叶斯多级模型进行研究。我们的分析表明,与非快速眼动(NREM)睡眠期间(尤其是NREM3期)发生率降低相比,某些发作起始分叉(不变圆上的鞍结和超临界霍普夫分叉)在清醒时更为普遍。我们在建模方法的背景下讨论了研究结果的可能含义,并提出了继续这一探索的其他途径。此外,我们证明了使用机器学习自动化这一分类过程的可行性,在识别与癫痫发作相关的独立成分和分类峰间期变化方面取得了高性能。我们的研究结果表明,头皮脑电图中的噪声可能会掩盖某些分叉形态,我们建议进行技术改进以提高检测准确性。扩大数据集并纳入长期生物节律,如昼夜节律和多日周期,可能会更全面地理解癫痫发作动力学,并改善临床决策。