Suppr超能文献

金黄色葡萄球菌染色体和外源性二氢叶酸还原酶与强效抑制剂甲氧苄啶复合物的结构比较。

Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim.

作者信息

Heaslet Holly, Harris Melissa, Fahnoe Kelly, Sarver Ronald, Putz Henry, Chang Jeanne, Subramanyam Chakrapani, Barreiro Gabriela, Miller J Richard

机构信息

Lead Development Technologies, Pfizer Global Research and Development, Groton, Connecticut 06340, USA.

出版信息

Proteins. 2009 Aug 15;76(3):706-17. doi: 10.1002/prot.22383.

Abstract

Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed "S1 DHFR." To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

摘要

二氢叶酸还原酶(DHFR)是一种负责将5,6-二氢叶酸在NADPH依赖下还原为5,6,7,8-四氢叶酸的酶,5,6,7,8-四氢叶酸是嘌呤、胸苷酸、甲硫氨酸及其他关键代谢物合成过程中必需的辅助因子。由于其在多种细胞功能中具有重要作用,DHFR一直是众多使用抗癌、抗菌和抗微生物药物靶向该酶的研究对象。临床上用于靶向DHFR的化合物包括用于治疗癌症的甲氨蝶呤以及用于治疗细菌感染的二氨基嘧啶(DAPs),如甲氧苄啶(TMP)。DHFR的DAP抑制剂已临床使用超过30年,对这些药物的耐药性已广泛存在。耐甲氧西林金黄色葡萄球菌(MRSA)是许多严重医院感染和社区获得性感染的病原体,其他革兰氏阳性菌可通过染色体基因突变或获得一种名为“S1 DHFR”的替代DHFR而对DAPs产生耐药性。为开发针对MRSA等健康威胁的新疗法,了解DAP耐药性的分子基础很重要。在此,我们报告了来自金黄色葡萄球菌的野生型染色体DHFR与NADPH和TMP复合物的晶体结构。我们还解析了外源性、耐TMP的S1 DHFR的结构,包括无配体状态以及与TMP复合物的结构。结构和热力学数据表明这两种酶之间存在重要的分子差异,这些差异导致DAPs对S1 DHFR的亲和力显著降低。酶结合亲和力的这些差异转化为对表达S1 DHFR的金黄色葡萄球菌菌株抗菌活性的降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验