Suppr超能文献

基于正常模式的变构偶联建模,其构成了F1 ATP酶中循环构象转变的基础。

Normal-mode-based modeling of allosteric couplings that underlie cyclic conformational transition in F(1) ATPase.

作者信息

Zheng Wenjun

机构信息

Department of Physics, University at Buffalo, New York 14260, USA.

出版信息

Proteins. 2009 Aug 15;76(3):747-62. doi: 10.1002/prot.22386.

Abstract

F(1) ATPase, a rotary motor comprised of a central stalk (gamma subunit) enclosed by three alpha and beta subunits alternately arranged in a hexamer, features highly cooperative binding and hydrolysis of ATP. Despite steady progress in biophysical, biochemical, and computational studies of this fascinating motor, the structural basis for cooperative ATPase involving its three catalytic sites remains not fully understood. To illuminate this key mechanistic puzzle, we have employed a coarse-grained elastic network model to probe the allosteric couplings underlying the cyclic conformational transition in F(1) ATPase at a residue level of detail. We will elucidate how ATP binding and product (ADP and phosphate) release at two catalytic sites are coupled with the rotation of gamma subunit via various domain motions in alpha(3)beta(3) hexamer (including intrasubunit hinge-bending motions in beta subunits and intersubunit rigid-body rotations between adjacent alpha and beta subunits). To this end, we have used a normal-mode-based correlation analysis to quantify the allosteric couplings of these domain motions to local motions at catalytic sites and the rotation of gamma subunit. We have then identified key amino acid residues involved in the above couplings, some of which have been validated against past studies of mutated and gamma-truncated F(1) ATPase. Our finding strongly supports a binding change mechanism where ATP binding to the empty catalytic site triggers a series of intra- and intersubunit domain motions leading to ATP hydrolysis and product release at the other two closed catalytic sites.

摘要

F(1) ATP酶是一种旋转马达,由一个中央轴(γ亚基)组成,该中央轴被交替排列成六聚体的三个α亚基和β亚基包围,具有高度协同的ATP结合和水解特性。尽管对这个迷人的马达进行的生物物理、生化和计算研究取得了稳步进展,但涉及其三个催化位点的协同ATP酶的结构基础仍未完全理解。为了阐明这个关键的机制难题,我们采用了一种粗粒度弹性网络模型,以在残基细节水平上探究F(1) ATP酶循环构象转变背后的变构偶联。我们将阐明两个催化位点处的ATP结合和产物(ADP和磷酸)释放如何通过α(3)β(3)六聚体中的各种结构域运动(包括β亚基中的亚基内铰链弯曲运动以及相邻α亚基和β亚基之间的亚基间刚体旋转)与γ亚基的旋转相偶联。为此,我们使用了基于正常模式的相关性分析来量化这些结构域运动与催化位点处局部运动以及γ亚基旋转的变构偶联。然后,我们确定了参与上述偶联的关键氨基酸残基,其中一些已通过对突变和γ截短的F(1) ATP酶的既往研究得到验证。我们的发现有力地支持了一种结合变化机制,即ATP与空的催化位点结合会触发一系列亚基内和亚基间的结构域运动,导致另外两个封闭催化位点处的ATP水解和产物释放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验