Suppr超能文献

进化构建多重图比对以分析生物分子结构。

Evolutionary construction of multiple graph alignments for the structural analysis of biomolecules.

机构信息

Department of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg, Germany.

出版信息

Bioinformatics. 2009 Aug 15;25(16):2110-7. doi: 10.1093/bioinformatics/btp144. Epub 2009 Mar 13.

Abstract

The concept of multiple graph alignment (MGA) has recently been introduced as a novel method for the structural analysis of biomolecules. Using approximate graph matching techniques, this method enables the robust identification of approximately conserved patterns in biologically related structures. In particular, MGA enables the characterization of functional protein families independent of sequence or fold homology. This article first recalls the concept of MGA and then addresses the problem of computing optimal alignments from an algorithmic point of view. In this regard, a method from the field of evolutionary algorithms is proposed and empirically compared with a hitherto existing heuristic approach. Empirically, it is shown that the former yields significantly better results than the latter, albeit at the cost of an increased runtime.

摘要

多图谱比对(MGA)的概念最近被引入,作为生物分子结构分析的一种新方法。该方法使用近似图匹配技术,能够稳健地识别生物相关结构中近似保守的模式。特别是,MGA 能够在不依赖序列或折叠同源性的情况下对功能蛋白家族进行特征描述。本文首先回顾了 MGA 的概念,然后从算法角度解决了最优比对的计算问题。在这方面,提出了一种来自进化算法领域的方法,并与迄今为止存在的启发式方法进行了经验比较。经验表明,前者的结果明显优于后者,尽管运行时间增加了。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验