Suppr超能文献

艾塞那肽-4使宫内生长受限大鼠的胰岛血管正常化:血管内皮生长因子的潜在作用

Exendin-4 normalizes islet vascularity in intrauterine growth restricted rats: potential role of VEGF.

作者信息

Ham J Nina, Crutchlow Michael F, Desai Biva M, Simmons Rebecca A, Stoffers Doris A

机构信息

Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.

出版信息

Pediatr Res. 2009 Jul;66(1):42-6. doi: 10.1203/PDR.0b013e3181a282a5.

Abstract

Intrauterine growth restriction (IUGR) induced by uterine artery ligation in pregnant rats leads to low birth weight and early insulin secretory defects followed by the development of insulin resistance, decline in beta-cell mass, and diabetes in adulthood. Neonatal administration of Exendin-4 (Ex-4) prevents the deterioration of beta-cell mass and the onset of adult-onset diabetes. Our aim was to determine whether this effect occurs through preservation of islet vascularization. In 2 wk-old IUGR rats, endothelial-specific lectin staining revealed a 40% reduction in islet vascular density (p = 0.027), which was normalized by neonatal Ex-4. VEGF-A protein expression was reduced in IUGR islets compared with controls at postnatal d 1 (P). Neonatal Ex-4 normalized islet VEGF protein expression at P7. Neither IUGR nor Ex-4 administration to IUGR rats affected relative VEGF splice isoform RNA levels. Together, the reduced vascularity in IUGR islets before the deterioration of beta-cell mass, and the enhancement of VEGF expression and normalization of islet vascularity by neonatal Ex-4, suggest islet vascularity as an early determinant of beta-cell mass and as a potential therapeutic target for diabetes prevention.

摘要

子宫动脉结扎诱导的妊娠大鼠宫内生长受限(IUGR)会导致出生体重低和早期胰岛素分泌缺陷,随后出现胰岛素抵抗、β细胞量减少以及成年期糖尿病。新生大鼠给予艾塞那肽-4(Ex-4)可防止β细胞量恶化和成年期糖尿病的发生。我们的目的是确定这种作用是否通过保留胰岛血管化来实现。在2周龄的IUGR大鼠中,内皮特异性凝集素染色显示胰岛血管密度降低了40%(p = 0.027),新生期给予Ex-4可使其恢复正常。与出生后第1天(P)的对照组相比,IUGR大鼠胰岛中的血管内皮生长因子-A(VEGF-A)蛋白表达降低。新生期给予Ex-4可使P7时胰岛VEGF蛋白表达恢复正常。IUGR以及对IUGR大鼠给予Ex-4均不影响VEGF剪接异构体的相对RNA水平。总之,在β细胞量恶化之前IUGR胰岛中的血管减少,以及新生期给予Ex-4可增强VEGF表达并使胰岛血管化恢复正常,这表明胰岛血管化是β细胞量的早期决定因素,也是预防糖尿病的潜在治疗靶点。

相似文献

1
Exendin-4 normalizes islet vascularity in intrauterine growth restricted rats: potential role of VEGF.
Pediatr Res. 2009 Jul;66(1):42-6. doi: 10.1203/PDR.0b013e3181a282a5.
2
Neonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-retarded rats.
Am J Physiol Regul Integr Comp Physiol. 2009 Dec;297(6):R1785-94. doi: 10.1152/ajpregu.00519.2009. Epub 2009 Oct 21.
3
Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat.
Diabetes. 2003 Mar;52(3):734-40. doi: 10.2337/diabetes.52.3.734.
6
Intrauterine growth retardation leads to the development of type 2 diabetes in the rat.
Diabetes. 2001 Oct;50(10):2279-86. doi: 10.2337/diabetes.50.10.2279.
7
8
Effect of placental restriction and neonatal exendin-4 treatment on postnatal growth, adult body composition, and in vivo glucose metabolism in the sheep.
Am J Physiol Endocrinol Metab. 2015 Sep 15;309(6):E589-600. doi: 10.1152/ajpendo.00487.2014. Epub 2015 Jul 28.

引用本文的文献

1
Neurodevelopmental Programming of Adiposity: Contributions to Obesity Risk.
Endocr Rev. 2024 Mar 4;45(2):253-280. doi: 10.1210/endrev/bnad031.
4
Developmental origins of metabolic diseases.
Physiol Rev. 2021 Jul 1;101(3):739-795. doi: 10.1152/physrev.00002.2020. Epub 2020 Dec 3.
6
Oxidative Stress, Intrauterine Growth Restriction, and Developmental Programming of Type 2 Diabetes.
Physiology (Bethesda). 2018 Sep 1;33(5):348-359. doi: 10.1152/physiol.00023.2018.
8
The impact of IUGR on pancreatic islet development and β-cell function.
J Endocrinol. 2017 Nov;235(2):R63-R76. doi: 10.1530/JOE-17-0076. Epub 2017 Aug 14.
9
Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture.
Mol Metab. 2017 May 15;6(7):748-759. doi: 10.1016/j.molmet.2017.05.006. eCollection 2017 Jul.

本文引用的文献

2
Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes.
Diabetes. 2006 Nov;55(11):2965-73. doi: 10.2337/db06-0733.
3
Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm.
Cancer Lett. 2007 May 8;249(2):133-42. doi: 10.1016/j.canlet.2006.08.015. Epub 2006 Oct 5.
4
Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome.
Physiol Behav. 2006 Jun 30;88(3):234-43. doi: 10.1016/j.physbeh.2006.05.039. Epub 2006 Jun 19.
5
The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation.
Dev Cell. 2006 Mar;10(3):397-405. doi: 10.1016/j.devcel.2006.01.015.
6
Identification of transcriptional targets during pancreatic growth after partial pancreatectomy and exendin-4 treatment.
Physiol Genomics. 2006 Jan 12;24(2):133-43. doi: 10.1152/physiolgenomics.00156.2005.
7
Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus.
Int J Biochem Cell Biol. 2006;38(5-6):845-59. doi: 10.1016/j.biocel.2005.07.011. Epub 2005 Sep 15.
8
Microvascular development: learning from pancreatic islets.
Bioessays. 2004 Oct;26(10):1069-75. doi: 10.1002/bies.20105.
9
Vascular endothelial growth factor: basic science and clinical progress.
Endocr Rev. 2004 Aug;25(4):581-611. doi: 10.1210/er.2003-0027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验