Suppr超能文献

用于重复蛋白质消化的聚合物纳米纤维上的高度稳定的胰蛋白酶聚集体涂层。

Highly stable trypsin-aggregate coatings on polymer nanofibers for repeated protein digestion.

作者信息

Kim Byoung Chan, Lopez-Ferrer Daniel, Lee Sang-Mok, Ahn Hye-Kyung, Nair Sujith, Kim Seong H, Kim Beom Soo, Petritis Konstantinos, Camp David G, Grate Jay W, Smith Richard D, Koo Yoon-Mo, Gu Man Bock, Kim Jungbae

机构信息

Institut Pasteur Korea, Seoul, Republic of Korea.

出版信息

Proteomics. 2009 Apr;9(7):1893-900. doi: 10.1002/pmic.200800591.

Abstract

A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization, and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was resistant to autolysis, enabling repeated digestions of BSA over 40 days and successful peptide identification by LC-MS/MS. This active and stable form of immobilized trypsin was successfully employed in the digestion of yeast proteome extract with high reproducibility and within shorter time than conventional protein digestion using solution phase trypsin. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e., chymotrypsin), which makes it suitable for use in "real-world" proteomic applications. Overall, the biocatalytic nanofibers with trypsin aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.

摘要

开发并展示了一种稳定且强大的基于胰蛋白酶的生物催化系统用于蛋白质组学应用。该系统利用涂有胰蛋白酶聚集体的聚合物纳米纤维进行固定化蛋白酶消化。在将初始层的胰蛋白酶共价连接到聚合物纳米纤维上后,通过戊二醛处理将高浓度的胰蛋白酶分子交联到分层的胰蛋白酶上。与传统的共价固定胰蛋白酶方法相比,该过程使胰蛋白酶活性提高了300倍,并且在经过一年的重复循环后仍保持高水平的活性,证明其具有很强的稳定性。这种高度稳定的固定化胰蛋白酶形式对自溶具有抗性,能够在40天内对牛血清白蛋白进行重复消化,并通过液相色谱-串联质谱成功鉴定肽段。这种活性和稳定的固定化胰蛋白酶形式成功地用于酵母蛋白质组提取物的消化,具有高重现性,且与使用溶液相胰蛋白酶的传统蛋白质消化相比,所需时间更短。最后,固定化胰蛋白酶在暴露于其他酶(即胰凝乳蛋白酶)时对蛋白水解具有抗性,这使其适用于“实际”蛋白质组学应用。总体而言,具有胰蛋白酶聚集体涂层的生物催化纳米纤维被证明是蛋白质组学分析中进行重复和自动化蛋白质消化的有效方法。

相似文献

1
Highly stable trypsin-aggregate coatings on polymer nanofibers for repeated protein digestion.
Proteomics. 2009 Apr;9(7):1893-900. doi: 10.1002/pmic.200800591.
4
Rapid and efficient proteolysis for proteomic analysis by protease-immobilized microreactor.
Electrophoresis. 2009 Sep;30(18):3257-64. doi: 10.1002/elps.200900134.
5
Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
J Chromatogr A. 2016 Dec 16;1477:22-29. doi: 10.1016/j.chroma.2016.11.027. Epub 2016 Nov 18.
7
Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis.
Talanta. 2009 Mar 15;77(5):1767-73. doi: 10.1016/j.talanta.2008.10.009. Epub 2008 Oct 17.
10
Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis.
Proteomics. 2011 Aug;11(16):3420-3. doi: 10.1002/pmic.201100069. Epub 2011 Jul 13.

引用本文的文献

1
Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi.
Anal Chem. 2012 Aug 21;84(16):7256-62. doi: 10.1021/ac301749h. Epub 2012 Aug 2.
2
Rapid and efficient protein digestion using trypsin-coated magnetic nanoparticles under pressure cycles.
Proteomics. 2011 Jan;11(2):309-18. doi: 10.1002/pmic.201000378. Epub 2010 Dec 17.
4
Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics.
Mol Cell Proteomics. 2011 Feb;10(2):M110.001479. doi: 10.1074/mcp.M110.001479. Epub 2010 Jul 12.
5
Nanobiocatalysis for protein digestion in proteomic analysis.
Proteomics. 2010 Feb;10(4):687-99. doi: 10.1002/pmic.200900519.

本文引用的文献

1
Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres.
Nanotechnology. 2005 Jul;16(7):S382-8. doi: 10.1088/0957-4484/16/7/011. Epub 2005 Apr 22.
2
Rapid sample processing for LC-MS-based quantitative proteomics using high intensity focused ultrasound.
J Proteome Res. 2008 Sep;7(9):3860-7. doi: 10.1021/pr800161x. Epub 2008 Aug 8.
3
Mass spectrometry analysis of proteome-wide proteolytic post-translational degradation of proteins.
Anal Chem. 2008 Aug 1;80(15):5819-28. doi: 10.1021/ac800077w. Epub 2008 Jun 26.
4
Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads.
Anal Chem. 2007 Mar 15;79(6):2394-401. doi: 10.1021/ac0614893. Epub 2007 Feb 7.
5
Mass spectrometry technologies for proteomics.
Brief Funct Genomic Proteomic. 2006 Feb;4(4):295-320. doi: 10.1093/bfgp/eli002. Epub 2006 Feb 3.
7
Nanopore-based proteolytic reactor for sensitive and comprehensive proteomic analyses.
Anal Chem. 2006 Jul 15;78(14):4811-9. doi: 10.1021/ac060116z.
8
Microwave-assisted protein preparation and enzymatic digestion in proteomics.
Mol Cell Proteomics. 2006 Apr;5(4):769-76. doi: 10.1074/mcp.T500022-MCP200. Epub 2005 Dec 9.
9
Ultra fast trypsin digestion of proteins by high intensity focused ultrasound.
J Proteome Res. 2005 Sep-Oct;4(5):1569-74. doi: 10.1021/pr050112v.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验