Suppr超能文献

在压力循环下使用胰蛋白酶包覆的磁性纳米颗粒进行快速有效的蛋白质消化。

Rapid and efficient protein digestion using trypsin-coated magnetic nanoparticles under pressure cycles.

机构信息

Department of Chemical and Biological Engineering, Korea University, Seoul, Korea.

出版信息

Proteomics. 2011 Jan;11(2):309-18. doi: 10.1002/pmic.201000378. Epub 2010 Dec 17.

Abstract

Trypsin-coated magnetic nanoparticles (EC-TR/NPs), prepared via a simple multilayer random crosslinking of the trypsin molecules onto magnetic nanoparticles, were highly stable and could be easily captured using a magnet after the digestion was complete. EC-TR/NPs showed a negligible loss of trypsin activity after multiple uses and continuous shaking, whereas the conventional immobilization of covalently attached trypsin on NPs resulted in a rapid inactivation under the same conditions due to the denaturation and autolysis of trypsin. A single model protein, a five-protein mixture, and a whole mouse brain proteome were digested at atmospheric pressure and 37°C for 12 h or in combination with pressure cycling technology at room temperature for 1 min. In all cases, EC-TR/NPs performed equally to or better than free trypsin in terms of both the identified peptide/protein number and the digestion reproducibility. In addition, the concomitant use of EC-TR/NPs and pressure cycling technology resulted in very rapid (∼1 min) and efficient digestions with more reproducible digestion results.

摘要

胰蛋白酶包覆的磁性纳米颗粒(EC-TR/NPs)是通过将胰蛋白酶分子随机多层交联到磁性纳米颗粒上制备而成的,具有高度的稳定性,在消化完成后可以很容易地用磁铁捕获。EC-TR/NPs 在多次使用和连续摇晃后,胰蛋白酶活性几乎没有损失,而传统的将共价连接的胰蛋白酶固定在 NPs 上,由于胰蛋白酶的变性和自溶,在相同条件下会迅速失活。单一的模型蛋白、五蛋白混合物和整个小鼠脑蛋白质组在大气压和 37°C 下孵育 12 小时,或与压力循环技术在室温下孵育 1 分钟。在所有情况下,与游离胰蛋白酶相比,EC-TR/NPs 在鉴定的肽/蛋白数量和消化重现性方面都表现出同等或更好的性能。此外,EC-TR/NPs 和压力循环技术的同时使用可实现非常快速(约 1 分钟)且高效的消化,并获得更可重现的消化结果。

相似文献

1
Rapid and efficient protein digestion using trypsin-coated magnetic nanoparticles under pressure cycles.
Proteomics. 2011 Jan;11(2):309-18. doi: 10.1002/pmic.201000378. Epub 2010 Dec 17.
3
Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.
J Chromatogr A. 2012 Sep 7;1254:8-13. doi: 10.1016/j.chroma.2012.07.030. Epub 2012 Jul 20.
5
On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis.
J Chromatogr A. 2007 Dec 28;1176(1-2):169-77. doi: 10.1016/j.chroma.2007.10.094. Epub 2007 Nov 4.
7
High efficiency and quantitatively reproducible protein digestion by trypsin-immobilized magnetic microspheres.
J Chromatogr A. 2012 Jan 13;1220:68-74. doi: 10.1016/j.chroma.2011.11.050. Epub 2011 Dec 2.
8
Systematic Evaluation of Immobilized Trypsin-Based Fast Protein Digestion for Deep and High-Throughput Bottom-Up Proteomics.
Proteomics. 2018 May;18(9):e1700432. doi: 10.1002/pmic.201700432. Epub 2018 Apr 15.
9
Immobilization of trypsin on superparamagnetic nanoparticles for rapid and effective proteolysis.
J Proteome Res. 2007 Sep;6(9):3849-55. doi: 10.1021/pr070132s. Epub 2007 Aug 3.

引用本文的文献

2
Targeted methods for quantitative analysis of protein glycosylation.
Proteomics Clin Appl. 2015 Feb;9(1-2):17-32. doi: 10.1002/prca.201400152. Epub 2015 Jan 19.
4
Pressure-assisted sample preparation for proteomic analysis.
Anal Biochem. 2013 Jul 1;438(1):67-72. doi: 10.1016/j.ab.2013.03.023. Epub 2013 Mar 29.

本文引用的文献

1
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
2
Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres.
Nanotechnology. 2005 Jul;16(7):S382-8. doi: 10.1088/0957-4484/16/7/011. Epub 2005 Apr 22.
3
Pressure-assisted tryptic digestion using a syringe.
Rapid Commun Mass Spectrom. 2010 Apr 15;24(7):901-8. doi: 10.1002/rcm.4467.
4
Rapid release of N-linked glycans from glycoproteins by pressure-cycling technology.
Anal Chem. 2010 Mar 15;82(6):2588-93. doi: 10.1021/ac100098e.
6
An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies.
J Proteome Res. 2010 Feb 5;9(2):997-1006. doi: 10.1021/pr900888b.
7
A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed.
Mol Cell Proteomics. 2009 Dec;8(12):2759-69. doi: 10.1074/mcp.M900375-MCP200. Epub 2009 Oct 14.
9
Mitochondrial proteomics and its application in biomedical research.
Mol Biosyst. 2009 Oct;5(10):1130-42. doi: 10.1039/b906296n. Epub 2009 Aug 3.
10
Shotgun proteome profile of Populus developing xylem.
Proteomics. 2009 Nov;9(21):4871-80. doi: 10.1002/pmic.200800854.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验