Suppr超能文献

通过纳米管挤压探究E-钙黏蛋白在膜-皮质相互作用中的作用。

Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion.

作者信息

Tabdanov Erdem, Borghi Nicolas, Brochard-Wyart Françoise, Dufour Sylvie, Thiery Jean-Paul

机构信息

Unite Mixte de Recherche 144, Centre National de la Recherche Scientifique-Institut Curie, Paris, France.

出版信息

Biophys J. 2009 Mar 18;96(6):2457-65. doi: 10.1016/j.bpj.2008.11.059.

Abstract

This study aims to define the role of E-cadherin (Ecad) engagement in cell-cell contact during membrane-cortex interaction. As a tool, we used a hydrodynamic membrane tube extrusion technique to characterize the mechanical interaction between the plasma membrane and the underlying cortical cytoskeleton. Cells were anchored on 4.5 microm beads coated with polylysine (PL) to obtain nonspecific cell adhesion or with an antibody against Ecad to mimic specific Ecad-mediated cell adhesion. We investigated tube length dynamics L(t) over time and through successive extrusions applied to the cell at regular time intervals. A constant slow velocity was observed for the first extrusion, for PL-attached cells. Subsequent extrusions had two phases: an initial high-velocity regime followed by a low-velocity regime. Successive extrusions gradually weakened the binding of the membrane around the tube neck to the underlying cortical cytoskeleton. Cells specifically attached via Ecad first exhibited a very low extrusion velocity regime followed by a faster extrusion regime similar to nonspecific extrusion. This indicates that Ecad strengthens the membrane-cortical cytoskeleton interaction, but only in a restricted area corresponding to the site of contact between the cell and the bead. Occasional giant "cortex" tubes were extruded with specifically anchored cells, demonstrating that the cortex remained tightly bound to the membrane through Ecad-mediated adhesion at the contact site.

摘要

本研究旨在确定E-钙黏蛋白(Ecad)参与细胞膜-皮质相互作用期间细胞间接触的作用。作为一种工具,我们使用了流体动力学膜管挤压技术来表征质膜与下方皮质细胞骨架之间的机械相互作用。细胞被固定在涂有聚赖氨酸(PL)的4.5微米珠子上以实现非特异性细胞黏附,或被固定在抗Ecad抗体上以模拟Ecad介导的特异性细胞黏附。我们研究了随时间变化以及在定期对细胞进行连续挤压时管长动力学L(t)。对于PL附着的细胞,第一次挤压观察到恒定的缓慢速度。随后的挤压有两个阶段:初始的高速阶段,随后是低速阶段。连续挤压逐渐削弱了管颈周围膜与下方皮质细胞骨架的结合。通过Ecad特异性附着的细胞首先表现出非常低的挤压速度阶段,随后是类似于非特异性挤压的更快挤压阶段。这表明Ecad增强了膜-皮质细胞骨架相互作用,但仅在与细胞和珠子接触部位相对应的受限区域内。偶尔会从特异性锚定的细胞中挤出巨大的“皮质”管,这表明皮质通过Ecad介导的接触部位黏附与膜紧密结合。

相似文献

1
Role of E-cadherin in membrane-cortex interaction probed by nanotube extrusion.
Biophys J. 2009 Mar 18;96(6):2457-65. doi: 10.1016/j.bpj.2008.11.059.
2
Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.
Biophys J. 2007 Aug 15;93(4):1369-79. doi: 10.1529/biophysj.106.087908. Epub 2007 May 25.
3
Dynamics of ligand-induced, Rac1-dependent anchoring of cadherins to the actin cytoskeleton.
J Cell Biol. 2002 Apr 29;157(3):469-79. doi: 10.1083/jcb.200107104. Epub 2002 Apr 22.
4
Strengthening E-cadherin adhesion via antibody-mediated binding stabilization.
Structure. 2024 Feb 1;32(2):217-227.e3. doi: 10.1016/j.str.2023.11.002. Epub 2023 Dec 4.
6
LI-cadherin-mediated cell-cell adhesion does not require cytoplasmic interactions.
J Cell Biol. 1997 Mar 10;136(5):1109-21. doi: 10.1083/jcb.136.5.1109.
8
Molecular mechanism for strengthening E-cadherin adhesion using a monoclonal antibody.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2204473119. doi: 10.1073/pnas.2204473119. Epub 2022 Aug 3.
10
Immediate-early signaling induced by E-cadherin engagement and adhesion.
J Biol Chem. 2008 Feb 22;283(8):5014-22. doi: 10.1074/jbc.M705209200. Epub 2007 Dec 17.

引用本文的文献

3
Adhesion strength between cells regulate nonmonotonic growth by a biomechanical feedback mechanism.
Biophys J. 2022 Oct 4;121(19):3719-3729. doi: 10.1016/j.bpj.2022.04.032. Epub 2022 May 2.
4
Tissue Regeneration from Mechanical Stretching of Cell-Cell Adhesion.
Tissue Eng Part C Methods. 2019 Nov;25(11):631-640. doi: 10.1089/ten.TEC.2019.0098. Epub 2019 Sep 25.
5
Signaling Pathways Induced by Leptin during Epithelial⁻Mesenchymal Transition in Breast Cancer.
Int J Mol Sci. 2018 Nov 6;19(11):3493. doi: 10.3390/ijms19113493.
6
Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity.
J Cell Biol. 2018 Mar 5;217(3):1063-1077. doi: 10.1083/jcb.201706013. Epub 2018 Jan 8.
7
Non-equilibrium Membrane Homeostasis in Expanding Cellular Domains.
Biophys J. 2017 Jul 11;113(1):132-137. doi: 10.1016/j.bpj.2017.06.001.
8
Transmission of cytokinesis forces via E-cadherin dilution and actomyosin flows.
Nature. 2017 May 4;545(7652):103-107. doi: 10.1038/nature22041. Epub 2017 Mar 15.
9
Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.
Biophys J. 2015 Dec 15;109(12):2471-2479. doi: 10.1016/j.bpj.2015.10.050.

本文引用的文献

1
Tensile forces govern germ-layer organization in zebrafish.
Nat Cell Biol. 2008 Apr;10(4):429-36. doi: 10.1038/ncb1705. Epub 2008 Mar 23.
2
EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt.
Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):13-9. doi: 10.1073/pnas.0710504105. Epub 2007 Dec 18.
3
Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis.
Nat Rev Mol Cell Biol. 2007 Aug;8(8):633-44. doi: 10.1038/nrm2222.
4
Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.
Biophys J. 2007 Aug 15;93(4):1369-79. doi: 10.1529/biophysj.106.087908. Epub 2007 May 25.
5
The universal dynamics of cell spreading.
Curr Biol. 2007 Apr 17;17(8):694-9. doi: 10.1016/j.cub.2007.02.058. Epub 2007 Mar 22.
6
Cadherins in development: cell adhesion, sorting, and tissue morphogenesis.
Genes Dev. 2006 Dec 1;20(23):3199-214. doi: 10.1101/gad.1486806.
7
Hydrodynamic narrowing of tubes extruded from cells.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7660-3. doi: 10.1073/pnas.0602012103. Epub 2006 May 5.
9
Deconstructing the cadherin-catenin-actin complex.
Cell. 2005 Dec 2;123(5):889-901. doi: 10.1016/j.cell.2005.09.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验