Yoshikawa Noritada, Nagasaki Masao, Sano Motoaki, Tokudome Satori, Ueno Kazuko, Shimizu Noriaki, Imoto Seiya, Miyano Satoru, Suematsu Makoto, Fukuda Keiichi, Morimoto Chikao, Tanaka Hirotoshi
Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, Univ. of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Am J Physiol Endocrinol Metab. 2009 Jun;296(6):E1363-73. doi: 10.1152/ajpendo.90767.2008. Epub 2009 Mar 17.
Recent studies have documented various roles of adrenal corticosteroid signaling in cardiac physiology and pathophysiology. It is known that glucocorticoids and aldosterone are able to bind glucocorticoid receptor (GR) and mineralocorticoid receptor, and these ligand-receptor interactions are redundant. It, therefore, has been impossible to delineate how these nuclear receptors couple with corticosteroid ligands and differentially regulate gene expression for operation of their distinct functions in the heart. Here, to particularly define the role of GR in cardiac muscle cells, we applied a ligand-based approach involving the GR-specific agonist cortivazol (CVZ) and the GR antagonist RU-486 and performed microarray analysis using rat neonatal cardiomyocytes. We indicated that glucocorticoids appear to be a major determinant of GR-mediated gene expression when compared with aldosterone. Moreover, expression profiles of these genes highlighted numerous roles of glucocorticoids in various aspects of cardiac physiology. At first, we identified that glucocorticoids, via GR, induce mRNA and protein expression of a transcription factor Kruppel-like factor 15 and its downstream target genes, including branched-chain aminotransferase 2, a key enzyme for amino acid catabolism in the muscle. CVZ treatment or overexpression of KLF15 decreased cellular branched-chain amino acid concentrations and introduction of small-interfering RNA against KLF15 cancelled these CVZ actions in cardiomyocytes. Second, glucocorticoid-GR signaling promoted gene expression of the enzymes involved in the prostaglandin biosynthesis, including cyclooxygenase-2 and phospholipase A2 in cardiomyocytes. Together, we may conclude that GR signaling should have distinct roles for maintenance of cardiac function, for example, in amino acid catabolism and prostaglandin biosynthesis in the heart.
最近的研究记录了肾上腺皮质类固醇信号在心脏生理和病理生理中的多种作用。已知糖皮质激素和醛固酮能够结合糖皮质激素受体(GR)和盐皮质激素受体,并且这些配体-受体相互作用是冗余的。因此,一直无法阐明这些核受体如何与皮质类固醇配体偶联并差异调节基因表达以在心脏中发挥其独特功能。在此,为了特别确定GR在心肌细胞中的作用,我们应用了一种基于配体的方法,涉及GR特异性激动剂可体松(CVZ)和GR拮抗剂RU-486,并使用大鼠新生心肌细胞进行了微阵列分析。我们指出,与醛固酮相比,糖皮质激素似乎是GR介导的基因表达的主要决定因素。此外,这些基因的表达谱突出了糖皮质激素在心脏生理各个方面的多种作用。首先,我们发现糖皮质激素通过GR诱导转录因子Kruppel样因子15及其下游靶基因的mRNA和蛋白质表达,包括支链氨基转移酶2,它是肌肉中氨基酸分解代谢的关键酶。CVZ处理或KLF15的过表达降低了细胞内支链氨基酸浓度,而引入针对KLF15的小干扰RNA消除了CVZ在心肌细胞中的这些作用。其次,糖皮质激素-GR信号促进了心肌细胞中参与前列腺素生物合成的酶的基因表达,包括环氧合酶-2和磷脂酶A2。总之,我们可以得出结论,GR信号在维持心脏功能方面应该具有不同的作用,例如在心脏中的氨基酸分解代谢和前列腺素生物合成中。