Vasina Elena N, Paszek Ewa, Nicolau Dan V, Nicolau Dan V
Department of Electrical Engineering & Electronics, The University of Liverpool, Liverpool, L69 3GJ, UK.
Lab Chip. 2009 Apr 7;9(7):891-900. doi: 10.1039/b813475h. Epub 2008 Dec 24.
Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.
蛋白质在固液界面的吸附对许多应用至关重要,包括生物材料、蛋白质微阵列和芯片实验室设备。尽管人们普遍对此感兴趣,并且在过去半个世纪进行了大量研究,但蛋白质吸附仍无法以工程级的、面向设计的精度进行预测。在此,我们描述了一个可在线免费获取的生物分子吸附数据库(BAD),该数据库存档了已发表的蛋白质吸附数据。对BAD中的数据应用带断点的分段线性回归表明,蛋白质吸附的输入变量,即溶液中的蛋白质浓度;从一级结构衍生的蛋白质描述符(残基数量、全局蛋白质疏水性和氨基酸疏水性范围、等电点);表面描述符(接触角);以及流体环境描述符(pH值、离子强度),与输出变量——表面上的蛋白质浓度具有良好的相关性。此外,神经网络分析表明,BAD的规模使其具有足够的代表性,基于神经网络的预测误差为5%或更低。有趣的是,如果将BAD分为两个分别代表蛋白质在亲水和疏水表面吸附的单独子集,则能始终获得更好的拟合效果。基于这些发现,从BAD中选取的条目已被用于构建基于神经网络的估计程序,该程序可预测吸附蛋白质的量、吸附层的厚度以及蛋白质覆盖表面的表面张力。虽然BAD具有普遍的研究价值,但对蛋白质覆盖层厚度和表面张力的预测与微流控设备的设计尤为相关。