Suppr超能文献

Experimental-computational evaluation of human bone marrow stromal cell spreading on trabecular bone structures.

作者信息

Sengers B G, Please C P, Taylor M, Oreffo R O C

机构信息

Bone & Joint Research Group, Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Mailpoint 887, Tremona Road, Southampton, SO16 6YD, UK.

出版信息

Ann Biomed Eng. 2009 Jun;37(6):1165-76. doi: 10.1007/s10439-009-9676-3. Epub 2009 Mar 19.

Abstract

The clinical application of macro-porous scaffolds for bone regeneration is significantly affected by the problem of insufficient cell colonization. Given the wide variety of different scaffold structures used for tissue engineering it is essential to derive relationships for cell colonization independent of scaffold architecture. To study cell population spreading on 3D structures decoupled from nutrient limitations, an in vitro culture system was developed consisting of thin slices of human trabecular bone seeded with Human Bone Marrow Stromal Cells, combined with dedicated microCT imaging and computational modeling of cell population spreading. Only the first phase of in vitro scaffold colonization was addressed, in which cells migrate and proliferate up to the stage when the surface of the bone is covered as a monolayer, a critical prerequisite for further tissue formation. The results confirm the model's ability to represent experimentally observed cell population spreading. The key advantage of the computational model was that by incorporating complex 3D structure, cell behavior can be characterized quantitatively in terms of intrinsic migration parameters, which could potentially be used for predictions on different macro-porous scaffolds subject to additional experimental validation. This type of modeling will prove useful in predicting cell colonization and improving strategies for skeletal tissue engineering.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验