Suppr超能文献

骨髓瘤细胞在体内骨髓微环境中表现出蛋白酶体活性增加以及对蛋白酶体抑制的反应增强。

Myeloma cells exhibit an increase in proteasome activity and an enhanced response to proteasome inhibition in the bone marrow microenvironment in vivo.

作者信息

Edwards Claire M, Lwin Seint T, Fowler Jessica A, Oyajobi Babatunde O, Zhuang Junling, Bates Andreia L, Mundy Gregory R

机构信息

Vanderbilt Center for Bone Biology, Department of Cancer Biology, Vanderbilt University, 1235 Medical Research Building IV, Nashville, TN 37232-0575, USA.

出版信息

Am J Hematol. 2009 May;84(5):268-72. doi: 10.1002/ajh.21374.

Abstract

The proteasome inhibitor bortezomib has a striking clinical benefit in patients with multiple myeloma. It is unknown whether the bone marrow microenvironment directly contributes to the dramatic response of myeloma cells to proteasome inhibition in vivo. We have used the well-characterized 5TGM1 murine model of myeloma to investigate myeloma growth within bone and response to the proteasome inhibitor bortezomib in vivo. Myeloma cells freshly isolated from the bone marrow of myeloma-bearing mice were found to have an increase in proteasome activity and an enhanced response to in vitro proteasome inhibition, as compared with pre-inoculation myeloma cells. Treatment of myeloma-bearing mice with bortezomib resulted in a greater reduction in tumor burden when the myeloma cells were located within the bone marrow when compared with extra-osseous sites. Our results demonstrate that myeloma cells exhibit an increase in proteasome activity and an enhanced response to bortezomib treatment when located within the bone marrow microenvironment in vivo.

摘要

蛋白酶体抑制剂硼替佐米对多发性骨髓瘤患者具有显著的临床疗效。尚不清楚骨髓微环境是否直接导致骨髓瘤细胞在体内对蛋白酶体抑制产生显著反应。我们使用了特征明确的5TGM1骨髓瘤小鼠模型来研究骨髓瘤在骨内的生长情况以及在体内对蛋白酶体抑制剂硼替佐米的反应。与接种前的骨髓瘤细胞相比,从荷瘤小鼠骨髓中新鲜分离出的骨髓瘤细胞的蛋白酶体活性有所增加,并且对体外蛋白酶体抑制的反应增强。与骨外部位相比,当骨髓瘤细胞位于骨髓内时,用硼替佐米治疗荷瘤小鼠可使肿瘤负荷得到更大程度的降低。我们的结果表明,当骨髓瘤细胞位于体内骨髓微环境中时,其蛋白酶体活性会增加,并且对硼替佐米治疗的反应会增强。

相似文献

2
Effect of noncompetitive proteasome inhibition on bortezomib resistance.
J Natl Cancer Inst. 2010 Jul 21;102(14):1069-82. doi: 10.1093/jnci/djq198. Epub 2010 May 26.
4
Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition.
Cancer Res. 2007 Feb 15;67(4):1783-92. doi: 10.1158/0008-5472.CAN-06-2258.
5
Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells.
Cancer Res. 2005 Sep 1;65(17):7896-901. doi: 10.1158/0008-5472.CAN-05-0506.
6
Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells.
Blood. 2006 Jun 15;107(12):4907-16. doi: 10.1182/blood-2005-08-3531. Epub 2006 Feb 28.
8
Proteasome inhibitor therapy in multiple myeloma.
Mol Cancer Ther. 2005 Apr;4(4):686-92. doi: 10.1158/1535-7163.MCT-04-0338.
9
Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib.
Nat Methods. 2005 May;2(5):357-62. doi: 10.1038/nmeth759. Epub 2005 Apr 21.
10
Quantitative phosphoproteomics of proteasome inhibition in multiple myeloma cells.
PLoS One. 2010 Sep 29;5(9):e13095. doi: 10.1371/journal.pone.0013095.

引用本文的文献

1
Novel Interleukin-6 Inducible Gene PDZ-Binding Kinase Promotes Tumor Growth of Multiple Myeloma Cells.
J Interferon Cytokine Res. 2020 Aug;40(8):389-405. doi: 10.1089/jir.2020.0111. Epub 2020 Jul 23.
3
Bone marker gene expression in calvarial bones: different bone microenvironments.
J Biol Res (Thessalon). 2017 May 16;24:9. doi: 10.1186/s40709-017-0066-y. eCollection 2017 Dec.
5
Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation.
Cell Chem Biol. 2017 Feb 16;24(2):218-230. doi: 10.1016/j.chembiol.2016.12.016. Epub 2017 Jan 26.
6
Proteasomal Inhibition by Ixazomib Induces CHK1 and MYC-Dependent Cell Death in T-cell and Hodgkin Lymphoma.
Cancer Res. 2016 Jun 1;76(11):3319-31. doi: 10.1158/0008-5472.CAN-15-2477. Epub 2016 Mar 17.
7
Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers.
J Proteomics. 2016 Mar 16;136:89-98. doi: 10.1016/j.jprot.2015.12.016. Epub 2016 Jan 13.
9
Myeloma cell-derived Runx2 promotes myeloma progression in bone.
Blood. 2015 Jun 4;125(23):3598-608. doi: 10.1182/blood-2014-12-613968. Epub 2015 Apr 10.
10
Identification of nitric oxide as an endogenous inhibitor of 26S proteasomes in vascular endothelial cells.
PLoS One. 2014 May 22;9(5):e98486. doi: 10.1371/journal.pone.0098486. eCollection 2014.

本文引用的文献

2
The pathogenesis of the bone disease of multiple myeloma.
Bone. 2008 Jun;42(6):1007-13. doi: 10.1016/j.bone.2008.01.027. Epub 2008 Feb 21.
5
Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease.
Br J Haematol. 2007 Nov;139(3):434-8. doi: 10.1111/j.1365-2141.2007.06829.x.
7
Detection of myeloma in skeleton of mice by whole-body optical fluorescence imaging.
Mol Cancer Ther. 2007 Jun;6(6):1701-8. doi: 10.1158/1535-7163.MCT-07-0121. Epub 2007 May 31.
8
The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients.
Blood. 2007 Jul 1;110(1):334-8. doi: 10.1182/blood-2006-11-059188. Epub 2007 Mar 19.
9
Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition.
Cancer Res. 2007 Feb 15;67(4):1783-92. doi: 10.1158/0008-5472.CAN-06-2258.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验