Suppr超能文献

西尼罗河病毒衣壳蛋白的α2和α3螺旋对于感染性病毒粒子的组装并非必需。

Helices alpha2 and alpha3 of West Nile virus capsid protein are dispensable for assembly of infectious virions.

作者信息

Schlick Petra, Taucher Christian, Schittl Beate, Tran Janina L, Kofler Regina M, Schueler Wolfgang, von Gabain Alexander, Meinke Andreas, Mandl Christian W

机构信息

Intercell AG, Vienna, Austria.

出版信息

J Virol. 2009 Jun;83(11):5581-91. doi: 10.1128/JVI.02653-08. Epub 2009 Mar 18.

Abstract

The internal hydrophobic sequence within the flaviviral capsid protein (protein C) plays an important role in the assembly of infectious virions. Here, this sequence was analyzed in a West Nile virus lineage I isolate (crow V76/1). An infectious cDNA clone was constructed and used to introduce deletions into the internal hydrophobic domain which comprises helix alpha2 and part of the loop intervening helices alpha2 and alpha3. In total, nine capsid deletion mutants (4 to 14 amino acids long) were constructed and tested for virus viability. Some of the short deletions did not significantly affect growth in cell culture, whereas larger deletions removing almost the entire hydrophobic region significantly impaired viral growth. Efficient growth of the majority of mutants could, however, be restored by the acquisition of second-site mutations. In most cases, these resuscitating mutations were point mutations within protein C changing individual amino acids into more hydrophobic residues, reminiscent of what had been observed previously for another flavivirus, tick-borne encephalitis virus. However, we also identified viable spontaneous pseudorevertants with more than one-third of the capsid protein removed, i.e., 36 or 37 of a total of 105 residues, including all of helix alpha3 and a hydrophilic segment connecting alpha3 and alpha4. These large deletions are predicted to induce formation of large, predominantly hydrophobic fusion helices which may substitute for the loss of the internal hydrophobic domain, underlining the unrivaled structural and functional flexibility of protein C.

摘要

黄病毒科衣壳蛋白(蛋白C)内部的疏水序列在感染性病毒粒子的组装中起着重要作用。在此,对西尼罗河病毒I型毒株(乌鸦V76/1)中的该序列进行了分析。构建了一个感染性cDNA克隆,并用于将缺失引入内部疏水区,该区域包括α2螺旋以及α2和α3螺旋之间的部分环。总共构建了9个衣壳缺失突变体(长度为4至14个氨基酸),并测试了病毒的生存能力。一些短缺失对细胞培养中的生长没有显著影响,而去除几乎整个疏水区域的较大缺失则显著损害病毒生长。然而,大多数突变体的有效生长可以通过获得第二位点突变来恢复。在大多数情况下,这些复苏突变是蛋白C内的点突变,将单个氨基酸变为更疏水的残基,这与先前在另一种黄病毒蜱传脑炎病毒中观察到的情况相似。然而,我们还鉴定出了可行的自发假回复突变体,其衣壳蛋白去除了超过三分之一,即总共105个残基中的36或37个,包括所有α3螺旋以及连接α3和α4的亲水片段。预计这些大缺失会诱导形成大的、主要为疏水的融合螺旋,这可能替代内部疏水区域的缺失,突出了蛋白C无与伦比的结构和功能灵活性。

相似文献

1
Helices alpha2 and alpha3 of West Nile virus capsid protein are dispensable for assembly of infectious virions.
J Virol. 2009 Jun;83(11):5581-91. doi: 10.1128/JVI.02653-08. Epub 2009 Mar 18.
4
Increased capsid oligomerization is deleterious to dengue virus particle production.
J Gen Virol. 2021 Aug;102(8). doi: 10.1099/jgv.0.001635.

引用本文的文献

1
Deletion viral genome diversity among bovine viral diarrhea virus (BVDV) 1a and 1b strains.
Virol J. 2025 Jul 14;22(1):237. doi: 10.1186/s12985-025-02773-z.
3
Identification of a critical role for ZIKV capsid α3 in virus assembly and its genetic interaction with M protein.
PLoS Negl Trop Dis. 2024 Jan 2;18(1):e0011873. doi: 10.1371/journal.pntd.0011873. eCollection 2024 Jan.
4
Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein.
PLoS Pathog. 2023 Feb 14;19(2):e1011125. doi: 10.1371/journal.ppat.1011125. eCollection 2023 Feb.
5
How Do Flaviviruses Hijack Host Cell Functions by Phase Separation?
Viruses. 2021 Jul 28;13(8):1479. doi: 10.3390/v13081479.
8
The role of capsid in the flaviviral life cycle and perspectives for vaccine development.
Vaccine. 2020 Oct 14;38(44):6872-6881. doi: 10.1016/j.vaccine.2020.08.053. Epub 2020 Sep 17.
10
Crystal Structure of the Japanese Encephalitis Virus Capsid Protein.
Viruses. 2019 Jul 6;11(7):623. doi: 10.3390/v11070623.

本文引用的文献

1
Functional analysis of potential carboxy-terminal cleavage sites of tick-borne encephalitis virus capsid protein.
J Virol. 2008 Mar;82(5):2218-29. doi: 10.1128/JVI.02116-07. Epub 2007 Dec 26.
2
Functional requirements of the yellow fever virus capsid protein.
J Virol. 2007 Jun;81(12):6471-81. doi: 10.1128/JVI.02120-06.
3
Attenuated dengue 2 viruses with deletions in capsid protein derived from an infectious full-length cDNA clone.
Virus Res. 2007 Jun;126(1-2):226-32. doi: 10.1016/j.virusres.2007.03.004. Epub 2007 Apr 6.
4
Structure of immature West Nile virus.
J Virol. 2007 Jun;81(11):6141-5. doi: 10.1128/JVI.00037-07. Epub 2007 Mar 21.
5
Structural and functional analysis of dengue virus RNA.
Novartis Found Symp. 2006;277:120-32; discussion 132-5, 251-3.
7
Immunogenicity of West Nile virus infectious DNA and its noninfectious derivatives.
Virology. 2006;356(1-2):115-25. doi: 10.1016/j.virol.2006.07.038. Epub 2006 Aug 28.
8
Production and characterization of vaccines based on flaviviruses defective in replication.
Virology. 2006 Aug 1;351(2):432-43. doi: 10.1016/j.virol.2006.04.003. Epub 2006 May 18.
10
Long-range RNA-RNA interactions circularize the dengue virus genome.
J Virol. 2005 Jun;79(11):6631-43. doi: 10.1128/JVI.79.11.6631-6643.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验