Suppr超能文献

用于光照不变匹配和形状恢复的反照率鲁棒估计。

Robust estimation of albedo for illumination-invariant matching and shape recovery.

作者信息

Biswas Soma, Aggarwal Gaurav, Chellappa Rama

机构信息

Center for Automation Research,University of Maryland, College Park, MD 20742-3275, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 May;31(5):884-99. doi: 10.1109/TPAMI.2008.135.

Abstract

We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions.

摘要

我们提出了一种用于从单幅图像估计反照率的非平稳随机滤波框架。文献中有几种反照率估计方法,但很少有方法考虑表面法线估计和光源方向估计中的误差来改进反照率估计。所提出的方法有效地利用了表面法线和光照方向的误差统计信息,以对由单个和多个光源照明的图像进行稳健的反照率估计。随后,将获得的反照率估计用于生成无反照率的归一化图像,以恢复物体的形状。传统的形状从阴影(SFS)方法通常假设反照率恒定/分段恒定且光源方向已知,以恢复底层形状。利用估计的反照率,将估计具有变化反照率图和未知照明源的物体形状这一一般问题简化为可由传统SFS方法处理的问题。提供了实验结果以展示该方法的有效性及其在光照不变匹配和形状恢复中的应用。将估计的反照率图与真实值进行比较。这些图被用作跨光照变化的人脸识别任务的光照不变特征。获得的识别结果与当前的最先进方法相比具有优势。使用从网络下载的对成像条件几乎没有控制的图像获得了令人印象深刻的形状恢复结果。恢复的形状还用于在新的光照条件下合成新视图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验