Shankar Karthik, Feng Xinjian, Grimes Craig A
Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
ACS Nano. 2009 Apr 28;3(4):788-94. doi: 10.1021/nn900090x.
Modern excitonic solar cells efficiently harvest photons in the 350-650 nm spectral range; however, device efficiencies are typically limited by poor quantum yields for red and near-infrared photons. Using Forster-type resonance energy transfer from zinc phthalocyanine donor molecules to ruthenium polypyridine complex acceptors, we demonstrate a four-fold increase in quantum yields for red photons in dye-sensitized nanowire array solar cells. The dissolved donor and surface anchored acceptor molecules are not tethered to each other, through either a direct chemical bond or a covalent linker layer. The spatial confinement of the electrolyte imposed by the wire-to-wire spacing of the close-packed nanowire array architecture ensures that the distances between a significant fraction of donors and acceptors are within a Förster radius. The critical distance for energy transfer from an isolated donor chromophore to a self-assembled monolayer of acceptors on a plane follows the inverse fourth power instead of the inverse sixth power relation. Consequently, we observe near quantitative energy transfer efficiencies in our devices. Our results represent a new design paradigm in excitonic solar cells and show it is possible to more closely match the spectral response of the device to the AM 1.5 solar spectrum through use of electronic energy transfer.
现代激子太阳能电池能有效地收集光谱范围在350 - 650纳米的光子;然而,器件效率通常受限于红光子和近红外光子的低量子产率。通过使用从锌酞菁供体分子到钌多吡啶配合物受体的福斯特型共振能量转移,我们证明了染料敏化纳米线阵列太阳能电池中红光子的量子产率提高了四倍。溶解的供体分子和表面锚定的受体分子之间没有通过直接化学键或共价连接层相互连接。紧密堆积的纳米线阵列结构中导线与导线之间的间距对电解质造成的空间限制确保了相当一部分供体和受体之间的距离在福斯特半径之内。从孤立的供体发色团到平面上受体自组装单层的能量转移临界距离遵循反四次方而非反六次方关系。因此,我们在器件中观察到了近乎定量的能量转移效率。我们的结果代表了激子太阳能电池的一种新设计范式,并表明通过使用电子能量转移可以使器件的光谱响应更紧密地匹配AM 1.5太阳光谱。