Soltwisch Jens, Souady Jamal, Berkenkamp Stefan, Dreisewerd Klaus
Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany.
Anal Chem. 2009 Apr 15;81(8):2921-34. doi: 10.1021/ac802301s.
Matrix-assisted laser desorption ionization (MALDI) allows for the mass spectrometric (MS) analysis of thermally labile, non-volatile biomolecules. However, some residual analyte fragmentation typically accompanies the phase transition from the condensed to the gas phase and following plume expansion, even under optimized conditions. In-source decay (ISD) and post-source decay (PSD) MALDI MS are two techniques that make use of these phenomena and that can provide useful structural information by producing characteristic fragment ions of the analyte compounds. In orthogonal extracting time-of-flight mass spectrometry (o-TOF-MS), the pressure of the cooling gas in the ion source has a strong influence on the extent of analyte ion fragmentation. We investigated the effect of this parameter on peptide and oligosaccharide fragmentation by examining a range of pressures (from 0.05-1.8 mbar) in combination with seven different buffer gases (He, Ne, Ar, N(2), CO(2), CH(3), isobutane). Ions were generated by ultraviolet (UV) and/or by infrared (IR) MALDI. The influence of the ion extraction voltage on the analyte fragmentation also was investigated for a selected set of gas parameters. We observed that individual fragment ions exhibit characteristic fragment yield-pressure dependencies that can be classified into three groups. Type I ions resemble species that are also found in MALDI PSD MS analysis, while type II ions resemble typical ISD fragments. The yield-pressure relationship of type III ions suggests that these are the result of a combination of both processes. Comparing the yields of fragmentation for the different buffer gases reveals a correlation between their internal degrees of freedom and their collisional cooling efficiency. Changing the buffer gas pressure and/or extraction field provides an easy means to influence analyte ion fragmentation and to switch from the primary production of one type of fragment species to another. The method can therefore facilitate the structural characterization of MALDI-generated ions.
基质辅助激光解吸电离(MALDI)可用于对热不稳定、非挥发性生物分子进行质谱(MS)分析。然而,即使在优化条件下,从凝聚相到气相的相变以及随后的羽流膨胀过程中,通常也会伴随一些残留的分析物碎片化现象。源内衰变(ISD)和源后衰变(PSD)MALDI MS是利用这些现象的两种技术,它们可以通过产生分析物化合物的特征碎片离子来提供有用的结构信息。在正交提取飞行时间质谱(o-TOF-MS)中,离子源中冷却气体的压力对分析物离子碎片化程度有很大影响。我们通过研究一系列压力(0.05 - 1.8毫巴)与七种不同缓冲气体(氦气、氖气、氩气、氮气、二氧化碳、甲烷、异丁烷)的组合,来考察该参数对肽和寡糖碎片化的影响。离子通过紫外(UV)和/或红外(IR)MALDI产生。对于一组选定的气体参数,还研究了离子提取电压对分析物碎片化的影响。我们观察到,单个碎片离子呈现出特征性的碎片产率 - 压力依赖性,可分为三组。I型离子类似于在MALDI PSD MS分析中也能找到的物种,而II型离子类似于典型的ISD碎片。III型离子的产率 - 压力关系表明,这些离子是两种过程共同作用的结果。比较不同缓冲气体的碎片化产率,揭示了它们的内自由度与其碰撞冷却效率之间的相关性。改变缓冲气体压力和/或提取场提供了一种简便的方法来影响分析物离子碎片化,并从一种类型的碎片物种的主要产生切换到另一种。因此,该方法有助于对MALDI产生的离子进行结构表征。