Suppr超能文献

用于空间点过程的贝叶斯归整法

Bayesian wombling for spatial point processes.

作者信息

Liang Shengde, Banerjee Sudipto, Carlin Bradley P

机构信息

MMC 303, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455-0392, USA.

出版信息

Biometrics. 2009 Dec;65(4):1243-53. doi: 10.1111/j.1541-0420.2009.01203.x.

Abstract

In many applications involving geographically indexed data, interest focuses on identifying regions of rapid change in the spatial surface, or the related problem of the construction or testing of boundaries separating regions with markedly different observed values of the spatial variable. This process is often referred to in the literature as boundary analysis or wombling. Recent developments in hierarchical models for point-referenced (geostatistical) and areal (lattice) data have led to corresponding statistical wombling methods, but there does not appear to be any literature on the subject in the point-process case, where the locations themselves are assumed to be random and likelihood evaluation is notoriously difficult. We extend existing point-level and areal wombling tools to this case, obtaining full posterior inference for multivariate spatial random effects that, when mapped, can help suggest spatial covariates still missing from the model. In the areal case we can also construct wombled maps showing significant boundaries in the fitted intensity surface, while the point-referenced formulation permits testing the significance of a postulated boundary. In the computationally demanding point-referenced case, our algorithm combines Monte Carlo approximants to the likelihood with a predictive process step to reduce the dimension of the problem to a manageable size. We apply these techniques to an analysis of colorectal and prostate cancer data from the northern half of Minnesota, where a key substantive concern is possible similarities in their spatial patterns, and whether they are affected by each patient's distance to facilities likely to offer helpful cancer screening options.

摘要

在许多涉及地理索引数据的应用中,关注点集中在识别空间表面快速变化的区域,或者是构建或检验分隔具有明显不同空间变量观测值区域的边界这一相关问题。在文献中,这个过程通常被称为边界分析或沃姆布林分析。针对点参考(地理统计)数据和面数据(格网数据)的分层模型的最新发展,已经产生了相应的统计沃姆布林方法,但在点过程情形下,似乎没有关于这个主题的任何文献,在这种情形中,位置本身被假定为随机的,并且似然评估非常困难。我们将现有的点级和面级沃姆布林工具扩展到这种情形,得到多元空间随机效应的完整后验推断,当进行映射时,这有助于指出模型中仍然缺失的空间协变量。在面数据情形下,我们还可以构建显示拟合强度表面中显著边界的沃姆布林地图,而点参考公式允许检验假定边界的显著性。在计算要求较高的点参考情形下,我们的算法将似然的蒙特卡罗近似与预测过程步骤相结合,以将问题的维度降低到可管理的大小。我们将这些技术应用于对明尼苏达州北半部的结直肠癌和前列腺癌数据的分析,其中一个关键的实质性问题是它们空间模式中可能存在的相似性,以及它们是否受到每位患者到可能提供有用癌症筛查选项的设施的距离的影响。

相似文献

1
Bayesian wombling for spatial point processes.
Biometrics. 2009 Dec;65(4):1243-53. doi: 10.1111/j.1541-0420.2009.01203.x.
3
Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models.
J Am Stat Assoc. 2006 Dec 1;101(476):1487-1501. doi: 10.1198/016214506000000041.
4
Ecological boundary detection using Bayesian areal wombling.
Ecology. 2010 Dec;91(12):3448-55; discussion 3503-14. doi: 10.1890/10-0807.1.
5
Using hierarchical spatial models for cancer control planning in Minnesota (United States).
Cancer Causes Control. 2002 Dec;13(10):903-16. doi: 10.1023/a:1021980820140.
6
7
An automatic adaptive method to combine summary statistics in approximate Bayesian computation.
PLoS One. 2020 Aug 6;15(8):e0236954. doi: 10.1371/journal.pone.0236954. eCollection 2020.
8
Spatial Difference Boundary Detection for Multiple Outcomes Using Bayesian Disease Mapping.
Biostatistics. 2023 Oct 18;24(4):922-944. doi: 10.1093/biostatistics/kxac013.
10
Generalized hierarchical multivariate CAR models for areal data.
Biometrics. 2005 Dec;61(4):950-61. doi: 10.1111/j.1541-0420.2005.00359.x.

引用本文的文献

1
Bayesian Modeling with Spatial Curvature Processes.
J Am Stat Assoc. 2024;119(546):1155-1167. doi: 10.1080/01621459.2023.2177166. Epub 2023 Mar 8.
2
Living on the Edge: Neighborhood Boundaries and the Spatial Dynamics of Violent Crime.
Demography. 2018 Oct;55(5):1957-1977. doi: 10.1007/s13524-018-0708-1.
4
Bayesian modeling and analysis for gradients in spatiotemporal processes.
Biometrics. 2015 Sep;71(3):575-84. doi: 10.1111/biom.12305. Epub 2015 Apr 20.
5
Modeling Three-Dimensional Chromosome Structures Using Gene Expression Data.
J Am Stat Assoc. 2011 Mar;106(493):61-72. doi: 10.1198/jasa.2010.ap0950.

本文引用的文献

1
Quasi-likelihood for Spatial Point Processes.
J R Stat Soc Series B Stat Methodol. 2015 Jun 1;77(3):677-697. doi: 10.1111/rssb.12083.
2
Approximate methods in Bayesian point process spatial models.
Comput Stat Data Anal. 2009 Jun 1;53(8):2831-2842. doi: 10.1016/j.csda.2008.05.017.
4
Bayesian Wombling: Curvilinear Gradient Assessment Under Spatial Process Models.
J Am Stat Assoc. 2006 Dec 1;101(476):1487-1501. doi: 10.1198/016214506000000041.
5
Gaussian predictive process models for large spatial data sets.
J R Stat Soc Series B Stat Methodol. 2008 Sep 1;70(4):825-848. doi: 10.1111/j.1467-9868.2008.00663.x.
6
Hierarchical Multiresolution Approaches for Dense Point-Level Breast Cancer Treatment Data.
Comput Stat Data Anal. 2008 Jan 20;52(5):2650-2668. doi: 10.1016/j.csda.2007.09.011.
7
An estimating function approach to inference for inhomogeneous Neyman-Scott processes.
Biometrics. 2007 Mar;63(1):252-8. doi: 10.1111/j.1541-0420.2006.00667.x.
8
Differential systematics.
Science. 1951 Sep 28;114(2961):315-22. doi: 10.1126/science.114.2961.315.
9
Statistical issues in the analysis of disease mapping data.
Stat Med. 2000;19(17-18):2493-519. doi: 10.1002/1097-0258(20000915/30)19:17/18<2493::aid-sim584>3.0.co;2-d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验