Jin Xiaoping, Carlin Bradley P, Banerjee Sudipto
Division of Biostatistics, School of Public Health, University of Minnesota, Mayo Mail Code 303, Minneapolis, 55455-0392, USA.
Biometrics. 2005 Dec;61(4):950-61. doi: 10.1111/j.1541-0420.2005.00359.x.
In the fields of medicine and public health, a common application of areal data models is the study of geographical patterns of disease. When we have several measurements recorded at each spatial location (for example, information on p>/= 2 diseases from the same population groups or regions), we need to consider multivariate areal data models in order to handle the dependence among the multivariate components as well as the spatial dependence between sites. In this article, we propose a flexible new class of generalized multivariate conditionally autoregressive (GMCAR) models for areal data, and show how it enriches the MCAR class. Our approach differs from earlier ones in that it directly specifies the joint distribution for a multivariate Markov random field (MRF) through the specification of simpler conditional and marginal models. This in turn leads to a significant reduction in the computational burden in hierarchical spatial random effect modeling, where posterior summaries are computed using Markov chain Monte Carlo (MCMC). We compare our approach with existing MCAR models in the literature via simulation, using average mean square error (AMSE) and a convenient hierarchical model selection criterion, the deviance information criterion (DIC; Spiegelhalter et al., 2002, Journal of the Royal Statistical Society, Series B64, 583-639). Finally, we offer a real-data application of our proposed GMCAR approach that models lung and esophagus cancer death rates during 1991-1998 in Minnesota counties.
在医学和公共卫生领域,区域数据模型的一个常见应用是疾病地理模式的研究。当我们在每个空间位置记录了多个测量值时(例如,来自相同人群组或地区的关于p≥2种疾病的信息),我们需要考虑多元区域数据模型,以便处理多元成分之间的依赖性以及不同地点之间的空间依赖性。在本文中,我们为区域数据提出了一类灵活的新型广义多元条件自回归(GMCAR)模型,并展示了它如何丰富了MCAR类别。我们的方法与早期方法的不同之处在于,它通过指定更简单的条件和边缘模型直接指定多元马尔可夫随机场(MRF)的联合分布。这反过来又显著减轻了分层空间随机效应建模中的计算负担,在分层空间随机效应建模中,后验汇总使用马尔可夫链蒙特卡罗(MCMC)进行计算。我们通过模拟,使用平均均方误差(AMSE)和一个方便的分层模型选择标准——偏差信息准则(DIC;Spiegelhalter等人,2002年,《皇家统计学会杂志》,B辑64卷,583 - 639页),将我们的方法与文献中现有的MCAR模型进行比较。最后,我们提供了一个我们提出的GMCAR方法的实际数据应用,该应用对明尼苏达各县1991 - 1998年期间的肺癌和食管癌死亡率进行建模。