Suppr超能文献

PET组间比较研究中,数据驱动的强度归一化优于全局均值归一化。

Data-driven intensity normalization of PET group comparison studies is superior to global mean normalization.

作者信息

Borghammer Per, Aanerud Joel, Gjedde Albert

机构信息

PET Center, Aarhus University Hospitals, Denmark.

出版信息

Neuroimage. 2009 Jul 15;46(4):981-8. doi: 10.1016/j.neuroimage.2009.03.021. Epub 2009 Mar 19.

Abstract

BACKGROUND

Global mean (GM) normalization is one of the most commonly used methods of normalization in PET and SPECT group comparison studies of neurodegenerative disorders. It requires that no between-group GM difference is present, which may be strongly violated in neurodegenerative disorders. Importantly, such GM differences often elude detection due to the large intrinsic variance in absolute values of cerebral blood flow or glucose consumption. Alternative methods of normalization are needed for this type of data.

MATERIALS AND METHODS

Two types of simulation were performed using CBF images from 49 controls. Two homogeneous groups of 20 subjects were sampled repeatedly. In one group, cortical CBF was artificially decreased moderately (simulation I) or slightly (simulation II). The other group served as controls. Ratio normalization was performed using five reference regions: (1) Global mean; (2) An unbiased VOI; (3) Data-driven region extraction (Andersson); (4-5) Reference cluster methods (Yakushev et al.). Using voxel-based statistics, it was determined how much of the original signal was detected following each type of normalization.

RESULTS

For both simulations, global mean normalization performed poorly, with only a few percent of the original signal recovered. Global mean normalization moreover created artificial increases. In contrast, the data-driven reference cluster method detected 65-95% of the original signal.

CONCLUSION

In the present simulation, the reference cluster method was superior to GM normalization. We conclude that the reference cluster method will likely yield more accurate results in the study of patients with early to moderate stage neurodegenerative disorders.

摘要

背景

在神经退行性疾病的PET和SPECT组间比较研究中,全球均值(GM)归一化是最常用的归一化方法之一。它要求组间不存在GM差异,但在神经退行性疾病中这一要求可能会被严重违反。重要的是,由于脑血流量或葡萄糖消耗绝对值存在较大的内在差异,这种GM差异往往难以检测到。对于这类数据,需要其他归一化方法。

材料与方法

使用49名对照者的CBF图像进行了两种类型的模拟。对两组各20名受试者进行重复抽样。在一组中,人为适度降低(模拟I)或轻微降低(模拟II)皮质CBF。另一组作为对照。使用五个参考区域进行比率归一化:(1)全球均值;(2)无偏兴趣区;(3)数据驱动区域提取(安德森法);(4 - 5)参考聚类方法(雅库舍夫等人的方法)。使用基于体素的统计方法,确定每种归一化类型后检测到的原始信号量。

结果

对于两种模拟,全球均值归一化效果都很差,仅恢复了百分之几的原始信号。此外,全球均值归一化还产生了人为增加的信号。相比之下,数据驱动的参考聚类方法检测到了65% - 95%的原始信号。

结论

在本模拟中,参考聚类方法优于GM归一化。我们得出结论,在早期至中期神经退行性疾病患者的研究中,参考聚类方法可能会产生更准确的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验