Zarschler Kristof, Janesch Bettina, Zayni Sonja, Schäffer Christina, Messner Paul
Department für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria.
Appl Environ Microbiol. 2009 May;75(10):3077-85. doi: 10.1128/AEM.00087-09. Epub 2009 Mar 20.
The gram-positive bacterium Paenibacillus alvei CCM 2051T is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. The S-layer O-glycan is a polymer of [-->3)-beta-D-Galp-(1[alpha-D-Glcp-(1-->6)]-->4)-beta-D-ManpNAc-(1-->] repeating units that is linked by an adaptor of -[GroA-2-->OPO2-->4-beta-D-ManpNAc-(1-->4)]-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-beta-D-Galp-(1--> to specific tyrosine residues of the S-layer protein. For elucidation of the mechanism governing S-layer glycan biosynthesis, a gene knockout system using bacterial mobile group II intron-mediated gene disruption was developed. The system is further based on the sgsE S-layer gene promoter of Geobacillus stearothermophilus NRS 2004/3a and on the Geobacillus-Bacillus-Escherichia coli shuttle vector pNW33N. As a target gene, wsfP, encoding a putative UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase, representing the predicted initiation enzyme of S-layer glycan biosynthesis, was disrupted. S-layer protein glycosylation was completely abolished in the insertional P. alvei CCM 2051T wsfP mutant, according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis evidence and carbohydrate analysis. Glycosylation was fully restored by plasmid-based expression of wsfP in the glycan-deficient P. alvei mutant, confirming that WsfP initiates S-layer protein glycosylation. This is the first report on the successful genetic manipulation of bacterial S-layer protein glycosylation in vivo, including transformation of and heterologous gene expression and gene disruption in the model organism P. alvei CCM 2051T.
革兰氏阳性细菌蜂房芽孢杆菌Paenibacillus alvei CCM 2051T被一层由糖蛋白亚基组成的倾斜表面层(S层)所覆盖。S层O-聚糖是由[-->3)-β-D-吡喃半乳糖-(1[α-D-吡喃葡萄糖-(1-->6)]-->4)-β-D-甘露糖胺-(1-->]重复单元组成的聚合物,它通过一个-[GroA-2-->OPO2-->4-β-D-甘露糖胺-(1-->4)]-->3)-α-L-鼠李糖-(1-->3)-α-L-鼠李糖-(1-->3)-α-L-鼠李糖-(1-->3)-β-D-吡喃半乳糖-(1-->的衔接子连接到S层蛋白的特定酪氨酸残基上。为了阐明控制S层聚糖生物合成的机制,开发了一种利用细菌移动II组内含子介导的基因破坏的基因敲除系统。该系统进一步基于嗜热栖热放线菌Geobacillus stearothermophilus NRS 2004/3a的sgsE S层基因启动子以及嗜热栖热放线菌-芽孢杆菌-大肠杆菌穿梭载体pNW33N。作为靶基因,编码一种假定的UDP-半乳糖:磷酸化聚异戊二烯半乳糖-1-磷酸转移酶的wsfP被破坏,该酶代表S层聚糖生物合成的预测起始酶。根据十二烷基硫酸钠-聚丙烯酰胺凝胶电泳证据和碳水化合物分析,插入型蜂房芽孢杆菌Paenibacillus alvei CCM 2051T wsfP突变体中的S层蛋白糖基化被完全消除。通过在聚糖缺陷型蜂房芽孢杆菌突变体中基于质粒表达wsfP,糖基化得以完全恢复,证实WsfP启动S层蛋白糖基化。这是关于在体内成功对细菌S层蛋白糖基化进行基因操作的首次报道,包括在模式生物蜂房芽孢杆菌Paenibacillus alvei CCM 2051T中的转化、异源基因表达和基因破坏。